Trivial commutative rings
Content created by Egbert Rijke, Fernando Chu and Garrett Figueroa.
Created on 2023-03-27.
Last modified on 2024-04-11.
module commutative-algebra.trivial-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import commutative-algebra.isomorphisms-commutative-rings open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.negation open import foundation.propositions open import foundation.sets open import foundation.structure-identity-principle open import foundation.unit-type open import foundation.universe-levels open import foundation-core.identity-types open import group-theory.abelian-groups open import group-theory.trivial-groups open import ring-theory.rings open import ring-theory.trivial-rings
Idea
Trivial commutative rings are commutative rings in which 0 = 1
.
Definition
is-trivial-commutative-ring-Prop : {l : Level} → Commutative-Ring l → Prop l is-trivial-commutative-ring-Prop A = Id-Prop ( set-Commutative-Ring A) ( zero-Commutative-Ring A) ( one-Commutative-Ring A) is-trivial-Commutative-Ring : {l : Level} → Commutative-Ring l → UU l is-trivial-Commutative-Ring A = type-Prop (is-trivial-commutative-ring-Prop A) is-prop-is-trivial-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-prop (is-trivial-Commutative-Ring A) is-prop-is-trivial-Commutative-Ring A = is-prop-type-Prop (is-trivial-commutative-ring-Prop A) is-nontrivial-commutative-ring-Prop : {l : Level} → Commutative-Ring l → Prop l is-nontrivial-commutative-ring-Prop A = neg-Prop (is-trivial-commutative-ring-Prop A) is-nontrivial-Commutative-Ring : {l : Level} → Commutative-Ring l → UU l is-nontrivial-Commutative-Ring A = type-Prop (is-nontrivial-commutative-ring-Prop A) is-prop-is-nontrivial-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-prop (is-nontrivial-Commutative-Ring A) is-prop-is-nontrivial-Commutative-Ring A = is-prop-type-Prop (is-nontrivial-commutative-ring-Prop A)
Properties
The carrier type of a zero commutative ring is contractible
is-contr-is-trivial-Commutative-Ring : {l : Level} (A : Commutative-Ring l) → is-trivial-Commutative-Ring A → is-contr (type-Commutative-Ring A) is-contr-is-trivial-Commutative-Ring A p = is-contr-is-trivial-Ring (ring-Commutative-Ring A) p
The trivial ring
trivial-Ring : Ring lzero pr1 trivial-Ring = trivial-Ab pr1 (pr1 (pr2 trivial-Ring)) x y = star pr2 (pr1 (pr2 trivial-Ring)) x y z = refl pr1 (pr1 (pr2 (pr2 trivial-Ring))) = star pr1 (pr2 (pr1 (pr2 (pr2 trivial-Ring)))) star = refl pr2 (pr2 (pr1 (pr2 (pr2 trivial-Ring)))) star = refl pr2 (pr2 (pr2 trivial-Ring)) = (λ a b c → refl) , (λ a b c → refl) is-commutative-trivial-Ring : is-commutative-Ring trivial-Ring is-commutative-trivial-Ring x y = refl trivial-Commutative-Ring : Commutative-Ring lzero trivial-Commutative-Ring = (trivial-Ring , is-commutative-trivial-Ring) is-trivial-trivial-Commutative-Ring : is-trivial-Commutative-Ring trivial-Commutative-Ring is-trivial-trivial-Commutative-Ring = refl
The type of trivial rings is contractible
To-do: complete proof of uniqueness of the zero ring using SIP, ideally refactor code to do zero algebras all along the chain to prettify and streamline future work
Recent changes
- 2024-04-11. Garrett Figueroa. Adding explicit zero algebras (#1095).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-04-08. Egbert Rijke. Refactoring elementary number theory files (#546).
- 2023-03-27. Fernando Chu. Change integral domains definition (#545).