Powers of large locales
Content created by Egbert Rijke, Fredrik Bakke, Julian KG, Maša Žaucer, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-05-09.
Last modified on 2024-04-11.
module order-theory.powers-of-large-locales where
Imports
open import foundation.identity-types open import foundation.large-binary-relations open import foundation.sets open import foundation.universe-levels open import order-theory.dependent-products-large-locales open import order-theory.greatest-lower-bounds-large-posets open import order-theory.large-locales open import order-theory.large-meet-semilattices open import order-theory.large-posets open import order-theory.large-suplattices open import order-theory.least-upper-bounds-large-posets open import order-theory.top-elements-large-posets
Idea
Given a large locale L
and a type X : UU l
, the large power locale is
the locale X → L
of functions from X
to L
.
Definitions
module _ {α : Level → Level} {β : Level → Level → Level} {γ : Level} {l1 : Level} (X : UU l1) (L : Large-Locale α β γ) where power-Large-Locale : Large-Locale (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) γ power-Large-Locale = Π-Large-Locale (λ (x : X) → L) large-poset-power-Large-Locale : Large-Poset (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) large-poset-power-Large-Locale = large-poset-Large-Locale power-Large-Locale set-power-Large-Locale : (l : Level) → Set (α l ⊔ l1) set-power-Large-Locale = set-Large-Locale power-Large-Locale type-power-Large-Locale : (l : Level) → UU (α l ⊔ l1) type-power-Large-Locale = type-Large-Locale power-Large-Locale is-set-type-power-Large-Locale : {l : Level} → is-set (type-power-Large-Locale l) is-set-type-power-Large-Locale = is-set-type-Large-Locale power-Large-Locale leq-prop-power-Large-Locale : Large-Relation-Prop ( λ l2 l3 → β l2 l3 ⊔ l1) ( type-power-Large-Locale) leq-prop-power-Large-Locale = leq-prop-Large-Locale power-Large-Locale leq-power-Large-Locale : Large-Relation ( λ l2 l3 → β l2 l3 ⊔ l1) ( type-power-Large-Locale) leq-power-Large-Locale = leq-Large-Locale power-Large-Locale is-prop-leq-power-Large-Locale : is-prop-Large-Relation (type-power-Large-Locale) (leq-power-Large-Locale) is-prop-leq-power-Large-Locale = is-prop-leq-Large-Locale power-Large-Locale refl-leq-power-Large-Locale : is-reflexive-Large-Relation type-power-Large-Locale leq-power-Large-Locale refl-leq-power-Large-Locale = refl-leq-Large-Locale power-Large-Locale antisymmetric-leq-power-Large-Locale : is-antisymmetric-Large-Relation ( type-power-Large-Locale) ( leq-power-Large-Locale) antisymmetric-leq-power-Large-Locale = antisymmetric-leq-Large-Locale power-Large-Locale transitive-leq-power-Large-Locale : is-transitive-Large-Relation type-power-Large-Locale leq-power-Large-Locale transitive-leq-power-Large-Locale = transitive-leq-Large-Locale power-Large-Locale large-meet-semilattice-power-Large-Locale : Large-Meet-Semilattice (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) large-meet-semilattice-power-Large-Locale = large-meet-semilattice-Large-Locale power-Large-Locale has-meets-power-Large-Locale : has-meets-Large-Poset large-poset-power-Large-Locale has-meets-power-Large-Locale = has-meets-Large-Locale power-Large-Locale meet-power-Large-Locale : {l2 l3 : Level} → type-power-Large-Locale l2 → type-power-Large-Locale l3 → type-power-Large-Locale (l2 ⊔ l3) meet-power-Large-Locale = meet-Large-Locale power-Large-Locale is-greatest-binary-lower-bound-meet-power-Large-Locale : {l2 l3 : Level} (x : type-power-Large-Locale l2) (y : type-power-Large-Locale l3) → is-greatest-binary-lower-bound-Large-Poset ( large-poset-power-Large-Locale) ( x) ( y) ( meet-power-Large-Locale x y) is-greatest-binary-lower-bound-meet-power-Large-Locale = is-greatest-binary-lower-bound-meet-Large-Locale power-Large-Locale has-top-element-power-Large-Locale : has-top-element-Large-Poset large-poset-power-Large-Locale has-top-element-power-Large-Locale = has-top-element-Large-Locale power-Large-Locale top-power-Large-Locale : type-power-Large-Locale lzero top-power-Large-Locale = top-Large-Locale power-Large-Locale is-top-element-top-power-Large-Locale : {l1 : Level} (x : type-power-Large-Locale l1) → leq-power-Large-Locale x top-power-Large-Locale is-top-element-top-power-Large-Locale = is-top-element-top-Large-Locale power-Large-Locale large-suplattice-power-Large-Locale : Large-Suplattice (λ l2 → α l2 ⊔ l1) (λ l2 l3 → β l2 l3 ⊔ l1) γ large-suplattice-power-Large-Locale = large-suplattice-Large-Locale power-Large-Locale is-large-suplattice-power-Large-Locale : is-large-suplattice-Large-Poset γ large-poset-power-Large-Locale is-large-suplattice-power-Large-Locale = is-large-suplattice-Large-Locale power-Large-Locale sup-power-Large-Locale : {l2 l3 : Level} {J : UU l2} (x : J → type-power-Large-Locale l3) → type-power-Large-Locale (γ ⊔ l2 ⊔ l3) sup-power-Large-Locale = sup-Large-Locale power-Large-Locale is-least-upper-bound-sup-power-Large-Locale : {l2 l3 : Level} {J : UU l2} (x : J → type-power-Large-Locale l3) → is-least-upper-bound-family-of-elements-Large-Poset ( large-poset-power-Large-Locale) ( x) ( sup-power-Large-Locale x) is-least-upper-bound-sup-power-Large-Locale = is-least-upper-bound-sup-Large-Locale power-Large-Locale distributive-meet-sup-power-Large-Locale : {l2 l3 l4 : Level} (x : type-power-Large-Locale l2) {J : UU l3} (y : J → type-power-Large-Locale l4) → meet-power-Large-Locale x (sup-power-Large-Locale y) = sup-power-Large-Locale (λ j → meet-power-Large-Locale x (y j)) distributive-meet-sup-power-Large-Locale = distributive-meet-sup-Large-Locale power-Large-Locale
Recent changes
- 2024-04-11. Fredrik Bakke. Strict symmetrizations of binary relations (#1025).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).