Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.

Created on 2022-05-16.
Last modified on 2023-10-16.

module synthetic-homotopy-theory.spectra where
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.function-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import structured-types.pointed-equivalences
open import structured-types.pointed-maps
open import structured-types.pointed-types

open import synthetic-homotopy-theory.loop-spaces
open import synthetic-homotopy-theory.prespectra
open import synthetic-homotopy-theory.suspensions-of-pointed-types
open import synthetic-homotopy-theory.suspensions-of-types


A spectrum is a sequence of pointed types A equipped with an equivalence

  Aₙ ≃∗ ΩAₙ₊₁

for each n : ℕ.


The predicate on prespectra of being a spectrum

is-spectrum-Prop : {l : Level}  Prespectrum l  Prop l
is-spectrum-Prop A =
    ( λ n 
      is-equiv-pointed-map-Prop (pointed-adjoint-structure-map-Prespectrum A n))

is-spectrum : {l : Level}  Prespectrum l  UU l
is-spectrum = type-Prop  is-spectrum-Prop

is-prop-is-spectrum : {l : Level} (A : Prespectrum l)  is-prop (is-spectrum A)
is-prop-is-spectrum = is-prop-type-Prop  is-spectrum-Prop

The type of spectra

Spectrum : (l : Level)  UU (lsuc l)
Spectrum l = Σ (Prespectrum l) (is-spectrum)

module _
  {l : Level} (A : Spectrum l)

  prespectrum-Spectrum : Prespectrum l
  prespectrum-Spectrum = pr1 A

  pointed-type-Spectrum :   Pointed-Type l
  pointed-type-Spectrum = pointed-type-Prespectrum prespectrum-Spectrum

  type-Spectrum :   UU l
  type-Spectrum = type-Prespectrum prespectrum-Spectrum

  point-Spectrum : (n : )  type-Spectrum n
  point-Spectrum = point-Prespectrum prespectrum-Spectrum

  pointed-adjoint-structure-map-Spectrum :
    (n : )  pointed-type-Spectrum n →∗ Ω (pointed-type-Spectrum (succ-ℕ n))
  pointed-adjoint-structure-map-Spectrum =
    pointed-adjoint-structure-map-Prespectrum prespectrum-Spectrum

  adjoint-structure-map-Spectrum :
    (n : )  type-Spectrum n  type-Ω (pointed-type-Spectrum (succ-ℕ n))
  adjoint-structure-map-Spectrum =
    adjoint-structure-map-Prespectrum prespectrum-Spectrum

  preserves-point-adjoint-structure-map-Spectrum :
    (n : ) 
    adjoint-structure-map-Prespectrum (pr1 A) n (point-Prespectrum (pr1 A) n) 
    refl-Ω (pointed-type-Prespectrum (pr1 A) (succ-ℕ n))
  preserves-point-adjoint-structure-map-Spectrum =
    preserves-point-adjoint-structure-map-Prespectrum prespectrum-Spectrum

  is-equiv-pointed-adjoint-structure-map-Spectrum :
    (n : )  is-equiv-pointed-map (pointed-adjoint-structure-map-Spectrum n)
  is-equiv-pointed-adjoint-structure-map-Spectrum = pr2 A

  structure-equiv-Spectrum :
    (n : )  type-Spectrum n  type-Ω (pointed-type-Spectrum (succ-ℕ n))
  pr1 (structure-equiv-Spectrum n) = adjoint-structure-map-Spectrum n
  pr2 (structure-equiv-Spectrum n) =
    is-equiv-pointed-adjoint-structure-map-Spectrum n

  pointed-structure-equiv-Spectrum :
    (n : )  pointed-type-Spectrum n ≃∗ Ω (pointed-type-Spectrum (succ-ℕ n))
  pr1 (pointed-structure-equiv-Spectrum n) = structure-equiv-Spectrum n
  pr2 (pointed-structure-equiv-Spectrum n) =
    preserves-point-adjoint-structure-map-Spectrum n

The structure maps of a spectrum

module _
  {l : Level} (A : Spectrum l) (n : )

  pointed-structure-map-Spectrum :
    suspension-Pointed-Type (pointed-type-Spectrum A n) →∗
    pointed-type-Spectrum A (succ-ℕ n)
  pointed-structure-map-Spectrum =
    pointed-structure-map-Prespectrum (prespectrum-Spectrum A) n

  structure-map-Spectrum :
    suspension (type-Spectrum A n)  type-Spectrum A (succ-ℕ n)
  structure-map-Spectrum = map-pointed-map pointed-structure-map-Spectrum

  preserves-point-structure-map-Spectrum :
    structure-map-Spectrum north-suspension  point-Spectrum A (succ-ℕ n)
  preserves-point-structure-map-Spectrum =
    preserves-point-pointed-map pointed-structure-map-Spectrum


  • J. P. May, A Concise Course in Algebraic Topology, 1999 (pdf)

Recent changes