Spectra
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-05-16.
Last modified on 2024-03-13.
module synthetic-homotopy-theory.spectra where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import structured-types.pointed-equivalences open import structured-types.pointed-maps open import structured-types.pointed-types open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.prespectra open import synthetic-homotopy-theory.suspensions-of-pointed-types open import synthetic-homotopy-theory.suspensions-of-types
Idea
A spectrum is a sequence of
pointed types A
equipped with an
equivalence
Aₙ ≃∗ ΩAₙ₊₁
for each n : ℕ
.
Definition
The predicate on prespectra of being a spectrum
is-spectrum-Prop : {l : Level} → Prespectrum l → Prop l is-spectrum-Prop A = Π-Prop ℕ ( λ n → is-pointed-equiv-Prop (pointed-adjoint-structure-map-Prespectrum A n)) is-spectrum : {l : Level} → Prespectrum l → UU l is-spectrum = type-Prop ∘ is-spectrum-Prop is-prop-is-spectrum : {l : Level} (A : Prespectrum l) → is-prop (is-spectrum A) is-prop-is-spectrum = is-prop-type-Prop ∘ is-spectrum-Prop
The type of spectra
Spectrum : (l : Level) → UU (lsuc l) Spectrum l = Σ (Prespectrum l) (is-spectrum) module _ {l : Level} (A : Spectrum l) where prespectrum-Spectrum : Prespectrum l prespectrum-Spectrum = pr1 A pointed-type-Spectrum : ℕ → Pointed-Type l pointed-type-Spectrum = pointed-type-Prespectrum prespectrum-Spectrum type-Spectrum : ℕ → UU l type-Spectrum = type-Prespectrum prespectrum-Spectrum point-Spectrum : (n : ℕ) → type-Spectrum n point-Spectrum = point-Prespectrum prespectrum-Spectrum pointed-adjoint-structure-map-Spectrum : (n : ℕ) → pointed-type-Spectrum n →∗ Ω (pointed-type-Spectrum (succ-ℕ n)) pointed-adjoint-structure-map-Spectrum = pointed-adjoint-structure-map-Prespectrum prespectrum-Spectrum adjoint-structure-map-Spectrum : (n : ℕ) → type-Spectrum n → type-Ω (pointed-type-Spectrum (succ-ℕ n)) adjoint-structure-map-Spectrum = adjoint-structure-map-Prespectrum prespectrum-Spectrum preserves-point-adjoint-structure-map-Spectrum : (n : ℕ) → adjoint-structure-map-Prespectrum (pr1 A) n (point-Prespectrum (pr1 A) n) = refl-Ω (pointed-type-Prespectrum (pr1 A) (succ-ℕ n)) preserves-point-adjoint-structure-map-Spectrum = preserves-point-adjoint-structure-map-Prespectrum prespectrum-Spectrum is-equiv-pointed-adjoint-structure-map-Spectrum : (n : ℕ) → is-pointed-equiv (pointed-adjoint-structure-map-Spectrum n) is-equiv-pointed-adjoint-structure-map-Spectrum = pr2 A structure-equiv-Spectrum : (n : ℕ) → type-Spectrum n ≃ type-Ω (pointed-type-Spectrum (succ-ℕ n)) pr1 (structure-equiv-Spectrum n) = adjoint-structure-map-Spectrum n pr2 (structure-equiv-Spectrum n) = is-equiv-pointed-adjoint-structure-map-Spectrum n pointed-structure-equiv-Spectrum : (n : ℕ) → pointed-type-Spectrum n ≃∗ Ω (pointed-type-Spectrum (succ-ℕ n)) pr1 (pointed-structure-equiv-Spectrum n) = structure-equiv-Spectrum n pr2 (pointed-structure-equiv-Spectrum n) = preserves-point-adjoint-structure-map-Spectrum n
The structure maps of a spectrum
module _ {l : Level} (A : Spectrum l) (n : ℕ) where pointed-structure-map-Spectrum : suspension-Pointed-Type (pointed-type-Spectrum A n) →∗ pointed-type-Spectrum A (succ-ℕ n) pointed-structure-map-Spectrum = pointed-structure-map-Prespectrum (prespectrum-Spectrum A) n structure-map-Spectrum : suspension (type-Spectrum A n) → type-Spectrum A (succ-ℕ n) structure-map-Spectrum = map-pointed-map pointed-structure-map-Spectrum preserves-point-structure-map-Spectrum : structure-map-Spectrum north-suspension = point-Spectrum A (succ-ℕ n) preserves-point-structure-map-Spectrum = preserves-point-pointed-map pointed-structure-map-Spectrum
References
- [May99]
- J. P. May. A Concise Course in Algebraic Topology. University of Chicago Press, 09 1999. ISBN 978-0-226-51183-2. URL: https://www.math.uchicago.edu/~may/CONCISE/ConciseRevised.pdf.
Recent changes
- 2024-03-13. Egbert Rijke. Refactoring pointed types (#1056).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. Sequential limits (#839).
- 2023-10-12. Fredrik Bakke. Define suspension prespectra and maps of prespectra (#833).
- 2023-05-03. Fredrik Bakke. Define the smash product of pointed types and refactor pointed types (#583).