Commuting squares of Galois connections between large posets
Content created by Egbert Rijke.
Created on 2023-11-24.
Last modified on 2023-11-24.
module order-theory.commuting-squares-of-galois-connections-large-posets where
Imports
open import foundation.universe-levels open import order-theory.commuting-squares-of-order-preserving-maps-large-posets open import order-theory.galois-connections-large-posets open import order-theory.large-posets
Idea
Consider a diagram of Galois connections
LI
------->
P ⊥ U
| <-------
| ∧ UI | ∧
| | | |
LF | | LG | |
|⊣| UF |⊣| UG
| | | |
∨ | LJ ∨ |
-------> |
Q ⊥ V.
<-------
UJ
between large posets. We say that the diagram
commutes if there is a
similarity
LJ ∘ LF ≈ LG ∘ LI
. This condition is
equivalent the condition that there is a
similarity UF ∘ UJ ≈ UI ∘ UG
.
Definitions
Commuting squares of Galois connections
module _ {αP αQ αU αV γF γG γI γJ δF δG δI δJ : Level → Level} {βP βQ βU βV : Level → Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (U : Large-Poset αU βU) (V : Large-Poset αV βV) (I : galois-connection-Large-Poset γI δI P U) (F : galois-connection-Large-Poset γF δF P Q) (G : galois-connection-Large-Poset γG δG U V) (J : galois-connection-Large-Poset γJ δJ Q V) where lower-coherence-square-galois-connection-Large-Poset : UUω lower-coherence-square-galois-connection-Large-Poset = lower-sim-galois-connection-Large-Poset P V ( comp-galois-connection-Large-Poset P Q V J F) ( comp-galois-connection-Large-Poset P U V G I) upper-coherence-square-galois-connection-Large-Poset : UUω upper-coherence-square-galois-connection-Large-Poset = upper-sim-galois-connection-Large-Poset P V ( comp-galois-connection-Large-Poset P U V G I) ( comp-galois-connection-Large-Poset P Q V J F)
Properties
A commuting square of lower adjoints of galois connections induces a commuting square of upper adjoints and vice versa
module _ {αP αQ αU αV γF γG γI γJ δF δG δI δJ : Level → Level} {βP βQ βU βV : Level → Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (U : Large-Poset αU βU) (V : Large-Poset αV βV) (I : galois-connection-Large-Poset γI δI P U) (F : galois-connection-Large-Poset γF δF P Q) (G : galois-connection-Large-Poset γG δG U V) (J : galois-connection-Large-Poset γJ δJ Q V) where lower-coherence-square-upper-coherence-square-galois-connection-Large-Poset : upper-coherence-square-galois-connection-Large-Poset P Q U V I F G J → lower-coherence-square-galois-connection-Large-Poset P Q U V I F G J lower-coherence-square-upper-coherence-square-galois-connection-Large-Poset = lower-sim-upper-sim-galois-connection-Large-Poset P V ( comp-galois-connection-Large-Poset P Q V J F) ( comp-galois-connection-Large-Poset P U V G I) upper-coherence-square-lower-coherence-square-galois-connection-Large-Poset : lower-coherence-square-galois-connection-Large-Poset P Q U V I F G J → upper-coherence-square-galois-connection-Large-Poset P Q U V I F G J upper-coherence-square-lower-coherence-square-galois-connection-Large-Poset = upper-sim-lower-sim-galois-connection-Large-Poset P V ( comp-galois-connection-Large-Poset P Q V J F) ( comp-galois-connection-Large-Poset P U V G I)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).