Families of equivalences
Content created by Egbert Rijke and Raymond Baker.
Created on 2023-12-05.
Last modified on 2023-12-05.
module foundation-core.families-of-equivalences where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.type-theoretic-principle-of-choice
Idea
A family of equivalences is a family
eᵢ : A i ≃ B i
of equivalences. Families of equivalences are also called fiberwise equivalences.
Definitions
The predicate of being a fiberwise equivalence
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} where is-fiberwise-equiv : (f : (x : A) → B x → C x) → UU (l1 ⊔ l2 ⊔ l3) is-fiberwise-equiv f = (x : A) → is-equiv (f x)
Fiberwise equivalences
module _ {l1 l2 l3 : Level} {A : UU l1} where fiberwise-equiv : (B : A → UU l2) (C : A → UU l3) → UU (l1 ⊔ l2 ⊔ l3) fiberwise-equiv B C = Σ ((x : A) → B x → C x) is-fiberwise-equiv map-fiberwise-equiv : {B : A → UU l2} {C : A → UU l3} → fiberwise-equiv B C → (a : A) → B a → C a map-fiberwise-equiv = pr1 is-fiberwise-equiv-fiberwise-equiv : {B : A → UU l2} {C : A → UU l3} → (e : fiberwise-equiv B C) → is-fiberwise-equiv (map-fiberwise-equiv e) is-fiberwise-equiv-fiberwise-equiv = pr2
Families of equivalences
module _ {l1 l2 l3 : Level} {A : UU l1} where fam-equiv : (B : A → UU l2) (C : A → UU l3) → UU (l1 ⊔ l2 ⊔ l3) fam-equiv B C = (x : A) → B x ≃ C x module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} (e : fam-equiv B C) where map-fam-equiv : (x : A) → B x → C x map-fam-equiv x = map-equiv (e x) is-equiv-map-fam-equiv : is-fiberwise-equiv map-fam-equiv is-equiv-map-fam-equiv x = is-equiv-map-equiv (e x)
Properties
Families of equivalences are equivalent to fiberwise equivalences
equiv-fiberwise-equiv-fam-equiv : {l1 l2 l3 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) → fam-equiv B C ≃ fiberwise-equiv B C equiv-fiberwise-equiv-fam-equiv B C = distributive-Π-Σ
See also
- In Functoriality of dependent pair types we show that a family of maps is a fiberwise equivalence if and only if it induces an equivalence on total spaces.
Recent changes
- 2023-12-05. Raymond Baker and Egbert Rijke. Universal property of fibers (#944).