Cyclic finite types
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-10-09.
Last modified on 2023-11-24.
module univalent-combinatorics.cyclic-finite-types where
Imports
open import elementary-number-theory.addition-integers open import elementary-number-theory.integers open import elementary-number-theory.modular-arithmetic open import elementary-number-theory.modular-arithmetic-standard-finite-types open import elementary-number-theory.natural-numbers open import elementary-number-theory.standard-cyclic-groups open import foundation.0-connected-types open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-maps open import foundation.contractible-types open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.identity-types open import foundation.mere-equality open import foundation.propositional-truncations open import foundation.sets open import foundation.subtype-identity-principle open import foundation.torsorial-type-families open import foundation.type-arithmetic-dependent-pair-types open import foundation.universe-levels open import group-theory.concrete-groups open import group-theory.groups open import group-theory.isomorphisms-groups open import higher-group-theory.higher-groups open import structured-types.equivalences-types-equipped-with-endomorphisms open import structured-types.mere-equivalences-types-equipped-with-endomorphisms open import structured-types.pointed-types open import structured-types.types-equipped-with-endomorphisms open import synthetic-homotopy-theory.groups-of-loops-in-1-types open import synthetic-homotopy-theory.loop-spaces
Idea
A cyclic type is a type X
equipped with an endomorphism f : X → X
such that
the pair (X, f)
is merely equivalent to the pair (ℤ-Mod k, +1)
for some
k : ℕ
.
Definitions
The type of cyclic types of a given order
is-cyclic-Type-With-Endomorphism : {l : Level} → ℕ → Type-With-Endomorphism l → UU l is-cyclic-Type-With-Endomorphism k X = mere-equiv-Type-With-Endomorphism (ℤ-Mod-Type-With-Endomorphism k) X Cyclic-Type : (l : Level) → ℕ → UU (lsuc l) Cyclic-Type l k = Σ (Type-With-Endomorphism l) (is-cyclic-Type-With-Endomorphism k) module _ {l : Level} (k : ℕ) (X : Cyclic-Type l k) where endo-Cyclic-Type : Type-With-Endomorphism l endo-Cyclic-Type = pr1 X type-Cyclic-Type : UU l type-Cyclic-Type = type-Type-With-Endomorphism endo-Cyclic-Type endomorphism-Cyclic-Type : type-Cyclic-Type → type-Cyclic-Type endomorphism-Cyclic-Type = endomorphism-Type-With-Endomorphism endo-Cyclic-Type mere-equiv-endo-Cyclic-Type : mere-equiv-Type-With-Endomorphism ( ℤ-Mod-Type-With-Endomorphism k) ( endo-Cyclic-Type) mere-equiv-endo-Cyclic-Type = pr2 X is-set-type-Cyclic-Type : is-set type-Cyclic-Type is-set-type-Cyclic-Type = apply-universal-property-trunc-Prop ( mere-equiv-endo-Cyclic-Type) ( is-set-Prop type-Cyclic-Type) ( λ e → is-set-equiv' ( ℤ-Mod k) ( equiv-equiv-Type-With-Endomorphism ( ℤ-Mod-Type-With-Endomorphism k) ( endo-Cyclic-Type) ( e)) ( is-set-ℤ-Mod k)) set-Cyclic-Type : Set l pr1 set-Cyclic-Type = type-Cyclic-Type pr2 set-Cyclic-Type = is-set-type-Cyclic-Type
Cyclic-Type structure on a type
cyclic-structure : {l : Level} → ℕ → UU l → UU l cyclic-structure k X = Σ (X → X) (λ f → is-cyclic-Type-With-Endomorphism k (X , f)) cyclic-type-cyclic-structure : {l : Level} (k : ℕ) {X : UU l} → cyclic-structure k X → Cyclic-Type l k pr1 (pr1 (cyclic-type-cyclic-structure k {X} c)) = X pr2 (pr1 (cyclic-type-cyclic-structure k c)) = pr1 c pr2 (cyclic-type-cyclic-structure k c) = pr2 c
The standard cyclic types
ℤ-Mod-Cyclic-Type : (k : ℕ) → Cyclic-Type lzero k pr1 (ℤ-Mod-Cyclic-Type k) = ℤ-Mod-Type-With-Endomorphism k pr2 (ℤ-Mod-Cyclic-Type k) = refl-mere-equiv-Type-With-Endomorphism (ℤ-Mod-Type-With-Endomorphism k) Fin-Cyclic-Type : (k : ℕ) → Cyclic-Type lzero (succ-ℕ k) Fin-Cyclic-Type k = ℤ-Mod-Cyclic-Type (succ-ℕ k) Cyclic-Type-Pointed-Type : (k : ℕ) → Pointed-Type (lsuc lzero) pr1 (Cyclic-Type-Pointed-Type k) = Cyclic-Type lzero k pr2 (Cyclic-Type-Pointed-Type k) = ℤ-Mod-Cyclic-Type k
Equivalences of cyclic types
module _ {l1 l2 : Level} (k : ℕ) (X : Cyclic-Type l1 k) (Y : Cyclic-Type l2 k) where equiv-Cyclic-Type : UU (l1 ⊔ l2) equiv-Cyclic-Type = equiv-Type-With-Endomorphism (endo-Cyclic-Type k X) (endo-Cyclic-Type k Y) equiv-equiv-Cyclic-Type : equiv-Cyclic-Type → type-Cyclic-Type k X ≃ type-Cyclic-Type k Y equiv-equiv-Cyclic-Type = equiv-equiv-Type-With-Endomorphism ( endo-Cyclic-Type k X) ( endo-Cyclic-Type k Y) map-equiv-Cyclic-Type : equiv-Cyclic-Type → type-Cyclic-Type k X → type-Cyclic-Type k Y map-equiv-Cyclic-Type e = map-equiv-Type-With-Endomorphism ( endo-Cyclic-Type k X) ( endo-Cyclic-Type k Y) ( e) coherence-square-equiv-Cyclic-Type : ( e : equiv-Cyclic-Type) → coherence-square-maps ( map-equiv-Cyclic-Type e) ( endomorphism-Cyclic-Type k X) ( endomorphism-Cyclic-Type k Y) ( map-equiv-Cyclic-Type e) coherence-square-equiv-Cyclic-Type e = pr2 e module _ {l : Level} (k : ℕ) (X : Cyclic-Type l k) where id-equiv-Cyclic-Type : equiv-Cyclic-Type k X X id-equiv-Cyclic-Type = id-equiv-Type-With-Endomorphism (endo-Cyclic-Type k X) equiv-eq-Cyclic-Type : (Y : Cyclic-Type l k) → Id X Y → equiv-Cyclic-Type k X Y equiv-eq-Cyclic-Type .X refl = id-equiv-Cyclic-Type is-torsorial-equiv-Cyclic-Type : {l1 : Level} (k : ℕ) (X : Cyclic-Type l1 k) → is-torsorial (equiv-Cyclic-Type k X) is-torsorial-equiv-Cyclic-Type k X = is-torsorial-Eq-subtype ( is-torsorial-equiv-Type-With-Endomorphism (endo-Cyclic-Type k X)) ( λ Y → is-prop-type-trunc-Prop) ( endo-Cyclic-Type k X) ( id-equiv-Type-With-Endomorphism (endo-Cyclic-Type k X)) ( mere-equiv-endo-Cyclic-Type k X) module _ {l : Level} (k : ℕ) (X : Cyclic-Type l k) where is-equiv-equiv-eq-Cyclic-Type : (Y : Cyclic-Type l k) → is-equiv (equiv-eq-Cyclic-Type k X Y) is-equiv-equiv-eq-Cyclic-Type = fundamental-theorem-id ( is-torsorial-equiv-Cyclic-Type k X) ( equiv-eq-Cyclic-Type k X) extensionality-Cyclic-Type : (Y : Cyclic-Type l k) → Id X Y ≃ equiv-Cyclic-Type k X Y pr1 (extensionality-Cyclic-Type Y) = equiv-eq-Cyclic-Type k X Y pr2 (extensionality-Cyclic-Type Y) = is-equiv-equiv-eq-Cyclic-Type Y eq-equiv-Cyclic-Type : (Y : Cyclic-Type l k) → equiv-Cyclic-Type k X Y → Id X Y eq-equiv-Cyclic-Type Y = map-inv-is-equiv (is-equiv-equiv-eq-Cyclic-Type Y)
Properties
module _ {l1 l2 : Level} (k : ℕ) (X : Cyclic-Type l1 k) (Y : Cyclic-Type l2 k) where htpy-equiv-Cyclic-Type : (e f : equiv-Cyclic-Type k X Y) → UU (l1 ⊔ l2) htpy-equiv-Cyclic-Type e f = map-equiv-Cyclic-Type k X Y e ~ map-equiv-Cyclic-Type k X Y f refl-htpy-equiv-Cyclic-Type : (e : equiv-Cyclic-Type k X Y) → htpy-equiv-Cyclic-Type e e refl-htpy-equiv-Cyclic-Type e = refl-htpy htpy-eq-equiv-Cyclic-Type : (e f : equiv-Cyclic-Type k X Y) → Id e f → htpy-equiv-Cyclic-Type e f htpy-eq-equiv-Cyclic-Type e .e refl = refl-htpy-equiv-Cyclic-Type e is-torsorial-htpy-equiv-Cyclic-Type : (e : equiv-Cyclic-Type k X Y) → is-torsorial (htpy-equiv-Cyclic-Type e) is-torsorial-htpy-equiv-Cyclic-Type e = is-contr-equiv' ( Σ ( equiv-Type-With-Endomorphism ( endo-Cyclic-Type k X) ( endo-Cyclic-Type k Y)) ( htpy-equiv-Type-With-Endomorphism ( endo-Cyclic-Type k X) ( endo-Cyclic-Type k Y) ( e))) ( equiv-tot ( λ f → right-unit-law-Σ-is-contr ( λ H → is-contr-Π ( λ x → is-set-type-Cyclic-Type k Y ( map-equiv-Cyclic-Type k X Y e ( endomorphism-Cyclic-Type k X x)) ( endomorphism-Cyclic-Type k Y ( map-equiv-Cyclic-Type k X Y f x)) ( ( H (endomorphism-Cyclic-Type k X x)) ∙ ( coherence-square-equiv-Cyclic-Type k X Y f x)) ( ( coherence-square-equiv-Cyclic-Type k X Y e x) ∙ ( ap (endomorphism-Cyclic-Type k Y) (H x))))))) ( is-torsorial-htpy-equiv-Type-With-Endomorphism ( endo-Cyclic-Type k X) ( endo-Cyclic-Type k Y) ( e)) is-equiv-htpy-eq-equiv-Cyclic-Type : (e f : equiv-Cyclic-Type k X Y) → is-equiv (htpy-eq-equiv-Cyclic-Type e f) is-equiv-htpy-eq-equiv-Cyclic-Type e = fundamental-theorem-id ( is-torsorial-htpy-equiv-Cyclic-Type e) ( htpy-eq-equiv-Cyclic-Type e) extensionality-equiv-Cyclic-Type : (e f : equiv-Cyclic-Type k X Y) → (e = f) ≃ htpy-equiv-Cyclic-Type e f pr1 (extensionality-equiv-Cyclic-Type e f) = htpy-eq-equiv-Cyclic-Type e f pr2 (extensionality-equiv-Cyclic-Type e f) = is-equiv-htpy-eq-equiv-Cyclic-Type e f eq-htpy-equiv-Cyclic-Type : (e f : equiv-Cyclic-Type k X Y) → htpy-equiv-Cyclic-Type e f → e = f eq-htpy-equiv-Cyclic-Type e f = map-inv-equiv (extensionality-equiv-Cyclic-Type e f) comp-equiv-Cyclic-Type : {l1 l2 l3 : Level} (k : ℕ) (X : Cyclic-Type l1 k) (Y : Cyclic-Type l2 k) (Z : Cyclic-Type l3 k) → equiv-Cyclic-Type k Y Z → equiv-Cyclic-Type k X Y → equiv-Cyclic-Type k X Z comp-equiv-Cyclic-Type k X Y Z = comp-equiv-Type-With-Endomorphism ( endo-Cyclic-Type k X) ( endo-Cyclic-Type k Y) ( endo-Cyclic-Type k Z) inv-equiv-Cyclic-Type : {l1 l2 : Level} (k : ℕ) (X : Cyclic-Type l1 k) (Y : Cyclic-Type l2 k) → equiv-Cyclic-Type k X Y → equiv-Cyclic-Type k Y X inv-equiv-Cyclic-Type k X Y = inv-equiv-Type-With-Endomorphism ( endo-Cyclic-Type k X) ( endo-Cyclic-Type k Y) associative-comp-equiv-Cyclic-Type : {l1 l2 l3 l4 : Level} (k : ℕ) (X : Cyclic-Type l1 k) (Y : Cyclic-Type l2 k) (Z : Cyclic-Type l3 k) (W : Cyclic-Type l4 k) (g : equiv-Cyclic-Type k Z W) (f : equiv-Cyclic-Type k Y Z) (e : equiv-Cyclic-Type k X Y) → ( comp-equiv-Cyclic-Type k X Y W (comp-equiv-Cyclic-Type k Y Z W g f) e) = ( comp-equiv-Cyclic-Type k X Z W g (comp-equiv-Cyclic-Type k X Y Z f e)) associative-comp-equiv-Cyclic-Type k X Y Z W g f e = eq-htpy-equiv-Cyclic-Type k X W ( comp-equiv-Cyclic-Type k X Y W (comp-equiv-Cyclic-Type k Y Z W g f) e) ( comp-equiv-Cyclic-Type k X Z W g (comp-equiv-Cyclic-Type k X Y Z f e)) ( refl-htpy) module _ {l1 l2 : Level} (k : ℕ) (X : Cyclic-Type l1 k) (Y : Cyclic-Type l2 k) (e : equiv-Cyclic-Type k X Y) where left-unit-law-comp-equiv-Cyclic-Type : Id (comp-equiv-Cyclic-Type k X Y Y (id-equiv-Cyclic-Type k Y) e) e left-unit-law-comp-equiv-Cyclic-Type = eq-htpy-equiv-Cyclic-Type k X Y ( comp-equiv-Cyclic-Type k X Y Y (id-equiv-Cyclic-Type k Y) e) ( e) ( refl-htpy) right-unit-law-comp-equiv-Cyclic-Type : Id (comp-equiv-Cyclic-Type k X X Y e (id-equiv-Cyclic-Type k X)) e right-unit-law-comp-equiv-Cyclic-Type = eq-htpy-equiv-Cyclic-Type k X Y ( comp-equiv-Cyclic-Type k X X Y e (id-equiv-Cyclic-Type k X)) ( e) ( refl-htpy) left-inverse-law-comp-equiv-Cyclic-Type : Id ( comp-equiv-Cyclic-Type k X Y X (inv-equiv-Cyclic-Type k X Y e) e) ( id-equiv-Cyclic-Type k X) left-inverse-law-comp-equiv-Cyclic-Type = eq-htpy-equiv-Cyclic-Type k X X ( comp-equiv-Cyclic-Type k X Y X (inv-equiv-Cyclic-Type k X Y e) e) ( id-equiv-Cyclic-Type k X) ( is-retraction-map-inv-equiv (equiv-equiv-Cyclic-Type k X Y e)) right-inverse-law-comp-equiv-Cyclic-Type : Id ( comp-equiv-Cyclic-Type k Y X Y e (inv-equiv-Cyclic-Type k X Y e)) ( id-equiv-Cyclic-Type k Y) right-inverse-law-comp-equiv-Cyclic-Type = eq-htpy-equiv-Cyclic-Type k Y Y ( comp-equiv-Cyclic-Type k Y X Y e (inv-equiv-Cyclic-Type k X Y e)) ( id-equiv-Cyclic-Type k Y) ( is-section-map-inv-equiv (equiv-equiv-Cyclic-Type k X Y e)) mere-eq-Cyclic-Type : {l : Level} (k : ℕ) (X Y : Cyclic-Type l k) → mere-eq X Y mere-eq-Cyclic-Type k X Y = apply-universal-property-trunc-Prop ( mere-equiv-endo-Cyclic-Type k X) ( mere-eq-Prop X Y) ( λ e → apply-universal-property-trunc-Prop ( mere-equiv-endo-Cyclic-Type k Y) ( mere-eq-Prop X Y) ( λ f → unit-trunc-Prop ( eq-equiv-Cyclic-Type k X Y ( comp-equiv-Cyclic-Type k X (ℤ-Mod-Cyclic-Type k) Y f ( inv-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) X e))))) is-0-connected-Cyclic-Type : (k : ℕ) → is-0-connected (Cyclic-Type lzero k) is-0-connected-Cyclic-Type k = is-0-connected-mere-eq ( ℤ-Mod-Cyclic-Type k) ( mere-eq-Cyclic-Type k (ℤ-Mod-Cyclic-Type k)) ∞-group-Cyclic-Type : (k : ℕ) → ∞-Group (lsuc lzero) pr1 (∞-group-Cyclic-Type k) = Cyclic-Type-Pointed-Type k pr2 (∞-group-Cyclic-Type k) = is-0-connected-Cyclic-Type k Eq-Cyclic-Type : (k : ℕ) → Cyclic-Type lzero k → UU lzero Eq-Cyclic-Type k X = type-Cyclic-Type k X refl-Eq-Cyclic-Type : (k : ℕ) → Eq-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) refl-Eq-Cyclic-Type k = zero-ℤ-Mod k Eq-equiv-Cyclic-Type : (k : ℕ) (X : Cyclic-Type lzero k) → equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) X → Eq-Cyclic-Type k X Eq-equiv-Cyclic-Type k X e = map-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) X e (zero-ℤ-Mod k) equiv-Eq-Cyclic-Type : (k : ℕ) → Eq-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) → equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) (ℤ-Mod-Cyclic-Type k) pr1 (equiv-Eq-Cyclic-Type k x) = equiv-add-ℤ-Mod' k x pr2 (equiv-Eq-Cyclic-Type k x) y = left-successor-law-add-ℤ-Mod k y x is-section-equiv-Eq-Cyclic-Type : (k : ℕ) → (Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) ∘ equiv-Eq-Cyclic-Type k) ~ id is-section-equiv-Eq-Cyclic-Type zero-ℕ x = left-unit-law-add-ℤ x is-section-equiv-Eq-Cyclic-Type (succ-ℕ k) x = left-unit-law-add-Fin k x preserves-pred-preserves-succ-map-ℤ-Mod : (k : ℕ) (f : ℤ-Mod k → ℤ-Mod k) → (f ∘ succ-ℤ-Mod k) ~ (succ-ℤ-Mod k ∘ f) → (f ∘ pred-ℤ-Mod k) ~ (pred-ℤ-Mod k ∘ f) preserves-pred-preserves-succ-map-ℤ-Mod k f H x = ( inv (is-retraction-pred-ℤ-Mod k (f (pred-ℤ-Mod k x)))) ∙ ( ap ( pred-ℤ-Mod k) ( ( inv (H (pred-ℤ-Mod k x))) ∙ ( ap f (is-section-pred-ℤ-Mod k x)))) compute-map-preserves-succ-map-ℤ-Mod' : (k : ℕ) (f : ℤ-Mod k → ℤ-Mod k) → (f ∘ succ-ℤ-Mod k) ~ (succ-ℤ-Mod k ∘ f) → (x : ℤ) → Id (add-ℤ-Mod k (mod-ℤ k x) (f (zero-ℤ-Mod k))) (f (mod-ℤ k x)) compute-map-preserves-succ-map-ℤ-Mod' k f H (inl zero-ℕ) = ( ap (add-ℤ-Mod' k (f (zero-ℤ-Mod k))) (mod-neg-one-ℤ k)) ∙ ( ( inv (is-left-add-neg-one-pred-ℤ-Mod k (f (zero-ℤ-Mod k)))) ∙ ( ( ap (pred-ℤ-Mod k) (ap f (inv (mod-zero-ℤ k)))) ∙ ( ( inv ( preserves-pred-preserves-succ-map-ℤ-Mod k f H (mod-ℤ k zero-ℤ))) ∙ ( inv (ap f (preserves-predecessor-mod-ℤ k zero-ℤ)))))) compute-map-preserves-succ-map-ℤ-Mod' k f H (inl (succ-ℕ x)) = ( ap ( add-ℤ-Mod' k (f (zero-ℤ-Mod k))) ( preserves-predecessor-mod-ℤ k (inl x))) ∙ ( ( left-predecessor-law-add-ℤ-Mod k (mod-ℤ k (inl x)) (f (zero-ℤ-Mod k))) ∙ ( ( ap ( pred-ℤ-Mod k) ( compute-map-preserves-succ-map-ℤ-Mod' k f H (inl x))) ∙ ( ( inv ( preserves-pred-preserves-succ-map-ℤ-Mod k f H (mod-ℤ k (inl x)))) ∙ ( ap f (inv (preserves-predecessor-mod-ℤ k (inl x))))))) compute-map-preserves-succ-map-ℤ-Mod' k f H (inr (inl _)) = ( ap (add-ℤ-Mod' k (f (zero-ℤ-Mod k))) (mod-zero-ℤ k)) ∙ ( ( left-unit-law-add-ℤ-Mod k (f (zero-ℤ-Mod k))) ∙ ( ap f (inv (mod-zero-ℤ k)))) compute-map-preserves-succ-map-ℤ-Mod' k f H (inr (inr zero-ℕ)) = ( ap-add-ℤ-Mod k (mod-one-ℤ k) (ap f (inv (mod-zero-ℤ k)))) ∙ ( ( inv (is-left-add-one-succ-ℤ-Mod k (f (mod-ℤ k zero-ℤ)))) ∙ ( ( inv (H (mod-ℤ k zero-ℤ))) ∙ ( ap f (inv (preserves-successor-mod-ℤ k zero-ℤ))))) compute-map-preserves-succ-map-ℤ-Mod' k f H (inr (inr (succ-ℕ x))) = ( ap ( add-ℤ-Mod' k (f (zero-ℤ-Mod k))) ( preserves-successor-mod-ℤ k (inr (inr x)))) ∙ ( ( left-successor-law-add-ℤ-Mod k ( mod-ℤ k (inr (inr x))) ( f (zero-ℤ-Mod k))) ∙ ( ( ap ( succ-ℤ-Mod k) ( compute-map-preserves-succ-map-ℤ-Mod' k f H (inr (inr x)))) ∙ ( ( inv (H (mod-ℤ k (inr (inr x))))) ∙ ( ap f (inv (preserves-successor-mod-ℤ k (inr (inr x)))))))) compute-map-preserves-succ-map-ℤ-Mod : (k : ℕ) (f : ℤ-Mod k → ℤ-Mod k) (H : (f ∘ succ-ℤ-Mod k) ~ (succ-ℤ-Mod k ∘ f)) (x : ℤ-Mod k) → Id (add-ℤ-Mod k x (f (zero-ℤ-Mod k))) (f x) compute-map-preserves-succ-map-ℤ-Mod k f H x = ( ap (add-ℤ-Mod' k (f (zero-ℤ-Mod k))) (inv (is-section-int-ℤ-Mod k x))) ∙ ( ( compute-map-preserves-succ-map-ℤ-Mod' k f H (int-ℤ-Mod k x)) ∙ ( ap f (is-section-int-ℤ-Mod k x))) is-retraction-equiv-Eq-Cyclic-Type : (k : ℕ) → (equiv-Eq-Cyclic-Type k ∘ Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k)) ~ id is-retraction-equiv-Eq-Cyclic-Type k e = eq-htpy-equiv-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( equiv-Eq-Cyclic-Type k (Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) e)) ( e) ( compute-map-preserves-succ-map-ℤ-Mod ( k) ( map-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) (ℤ-Mod-Cyclic-Type k) e) ( coherence-square-equiv-Cyclic-Type ( k) ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( e))) abstract is-equiv-Eq-equiv-Cyclic-Type : (k : ℕ) (X : Cyclic-Type lzero k) → is-equiv (Eq-equiv-Cyclic-Type k X) is-equiv-Eq-equiv-Cyclic-Type k X = apply-universal-property-trunc-Prop ( mere-eq-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) X) ( is-equiv-Prop (Eq-equiv-Cyclic-Type k X)) ( λ where refl → is-equiv-is-invertible ( equiv-Eq-Cyclic-Type k) ( is-section-equiv-Eq-Cyclic-Type k) ( is-retraction-equiv-Eq-Cyclic-Type k)) equiv-compute-Ω-Cyclic-Type : (k : ℕ) → type-Ω (pair (Cyclic-Type lzero k) (ℤ-Mod-Cyclic-Type k)) ≃ ℤ-Mod k equiv-compute-Ω-Cyclic-Type k = ( pair ( Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k)) ( is-equiv-Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k))) ∘e ( extensionality-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) (ℤ-Mod-Cyclic-Type k)) map-equiv-compute-Ω-Cyclic-Type : (k : ℕ) → type-Ω (pair (Cyclic-Type lzero k) (ℤ-Mod-Cyclic-Type k)) → ℤ-Mod k map-equiv-compute-Ω-Cyclic-Type k = map-equiv (equiv-compute-Ω-Cyclic-Type k) preserves-concat-equiv-eq-Cyclic-Type : (k : ℕ) (X Y Z : Cyclic-Type lzero k) (p : Id X Y) (q : Id Y Z) → Id ( equiv-eq-Cyclic-Type k X Z (p ∙ q)) ( comp-equiv-Cyclic-Type k X Y Z ( equiv-eq-Cyclic-Type k Y Z q) ( equiv-eq-Cyclic-Type k X Y p)) preserves-concat-equiv-eq-Cyclic-Type k X .X Z refl q = inv ( right-unit-law-comp-equiv-Cyclic-Type k X Z (equiv-eq-Cyclic-Type k X Z q)) preserves-comp-Eq-equiv-Cyclic-Type : (k : ℕ) (e f : equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) (ℤ-Mod-Cyclic-Type k)) → Id ( Eq-equiv-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( comp-equiv-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( f) ( e))) ( add-ℤ-Mod k ( Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) e) ( Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) f)) preserves-comp-Eq-equiv-Cyclic-Type k e f = inv ( compute-map-preserves-succ-map-ℤ-Mod k ( map-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k) (ℤ-Mod-Cyclic-Type k) f) ( coherence-square-equiv-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( f)) ( map-equiv-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( e) ( zero-ℤ-Mod k))) preserves-concat-equiv-compute-Ω-Cyclic-Type : (k : ℕ) {p q : type-Ω (Cyclic-Type-Pointed-Type k)} → Id ( map-equiv (equiv-compute-Ω-Cyclic-Type k) (p ∙ q)) ( add-ℤ-Mod k ( map-equiv (equiv-compute-Ω-Cyclic-Type k) p) ( map-equiv (equiv-compute-Ω-Cyclic-Type k) q)) preserves-concat-equiv-compute-Ω-Cyclic-Type k {p} {q} = ( ap ( Eq-equiv-Cyclic-Type k (ℤ-Mod-Cyclic-Type k)) ( preserves-concat-equiv-eq-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) ( p) ( q))) ∙ ( preserves-comp-Eq-equiv-Cyclic-Type k ( equiv-eq-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) p) ( equiv-eq-Cyclic-Type k ( ℤ-Mod-Cyclic-Type k) ( ℤ-Mod-Cyclic-Type k) q)) type-Ω-Cyclic-Type : (k : ℕ) → UU (lsuc lzero) type-Ω-Cyclic-Type k = Id (ℤ-Mod-Cyclic-Type k) (ℤ-Mod-Cyclic-Type k) is-set-type-Ω-Cyclic-Type : (k : ℕ) → is-set (type-Ω-Cyclic-Type k) is-set-type-Ω-Cyclic-Type k = is-set-equiv ( ℤ-Mod k) ( equiv-compute-Ω-Cyclic-Type k) ( is-set-ℤ-Mod k) concrete-group-Cyclic-Type : (k : ℕ) → Concrete-Group (lsuc lzero) pr1 (concrete-group-Cyclic-Type k) = ∞-group-Cyclic-Type k pr2 (concrete-group-Cyclic-Type k) = is-set-type-Ω-Cyclic-Type k Ω-Cyclic-Type-Group : (k : ℕ) → Group (lsuc lzero) Ω-Cyclic-Type-Group k = loop-space-Group ( pair (Cyclic-Type lzero k) (ℤ-Mod-Cyclic-Type k)) ( is-set-type-Ω-Cyclic-Type k) equiv-Ω-Cyclic-Type-Group : (k : ℕ) → equiv-Group (Ω-Cyclic-Type-Group k) (ℤ-Mod-Group k) pr1 (equiv-Ω-Cyclic-Type-Group k) = equiv-compute-Ω-Cyclic-Type k pr2 (equiv-Ω-Cyclic-Type-Group k) {x} {y} = preserves-concat-equiv-compute-Ω-Cyclic-Type k {x} {y} iso-Ω-Cyclic-Type-Group : (k : ℕ) → iso-Group (Ω-Cyclic-Type-Group k) (ℤ-Mod-Group k) iso-Ω-Cyclic-Type-Group k = iso-equiv-Group ( Ω-Cyclic-Type-Group k) ( ℤ-Mod-Group k) ( equiv-Ω-Cyclic-Type-Group k)
See also
Table of files related to cyclic types, groups, and rings
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-10-21. Egbert Rijke and Fredrik Bakke. Implement
is-torsorial
throughout the library (#875). - 2023-10-21. Egbert Rijke. Rename
is-contr-total
tois-torsorial
(#871). - 2023-10-19. Egbert Rijke. Characteristic subgroups (#863).
- 2023-10-16. Fredrik Bakke. Compatibility patch for Agda 2.6.4 (#846).