Pullback cones
Content created by Fredrik Bakke.
Created on 2024-10-27.
Last modified on 2024-10-27.
module foundation.pullback-cones where
Imports
open import foundation.action-on-identifications-functions open import foundation.cones-over-cospan-diagrams open import foundation.cospan-diagrams open import foundation.dependent-pair-types open import foundation.dependent-universal-property-equivalences open import foundation.function-extensionality open import foundation.fundamental-theorem-of-identity-types open import foundation.homotopies open import foundation.homotopy-induction open import foundation.identity-types open import foundation.multivariable-homotopies open import foundation.standard-pullbacks open import foundation.structure-identity-principle open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.pullbacks open import foundation-core.retractions open import foundation-core.sections open import foundation-core.torsorial-type-families open import foundation-core.transport-along-identifications open import foundation-core.universal-property-pullbacks open import foundation-core.whiskering-identifications-concatenation
Idea
A cone 𝑐
over a
cospan diagram A -f-> X <-g- B
with domain C
is a
pullback cone¶ if its
gap map
C → standard-pullback f g
is an equivalence. This is known as the small predicate of being a pullback.
Definitions
Pullback cones
module _ {l1 l2 l3 : Level} (𝒮 : cospan-diagram l1 l2 l3) where pullback-cone : (l4 : Level) → UU (l1 ⊔ l2 ⊔ l3 ⊔ lsuc l4) pullback-cone l4 = Σ ( Σ ( UU l4) ( λ C → cone (left-map-cospan-diagram 𝒮) (right-map-cospan-diagram 𝒮) C)) ( λ (C , c) → is-pullback (left-map-cospan-diagram 𝒮) (right-map-cospan-diagram 𝒮) c) module _ {l1 l2 l3 l4 : Level} (𝒮 : cospan-diagram l1 l2 l3) (c : pullback-cone 𝒮 l4) where domain-pullback-cone : UU l4 domain-pullback-cone = pr1 (pr1 c) cone-pullback-cone : cone ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( domain-pullback-cone) cone-pullback-cone = pr2 (pr1 c) vertical-map-pullback-cone : domain-pullback-cone → left-type-cospan-diagram 𝒮 vertical-map-pullback-cone = vertical-map-cone ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone) horizontal-map-pullback-cone : domain-pullback-cone → right-type-cospan-diagram 𝒮 horizontal-map-pullback-cone = horizontal-map-cone ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone) coherence-square-pullback-cone : coherence-square-maps ( horizontal-map-pullback-cone) ( vertical-map-pullback-cone) ( right-map-cospan-diagram 𝒮) ( left-map-cospan-diagram 𝒮) coherence-square-pullback-cone = coherence-square-cone ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone) is-pullback-pullback-cone : is-pullback ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone) is-pullback-pullback-cone = pr2 c up-pullback-cone : universal-property-pullback ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone) up-pullback-cone = universal-property-pullback-is-pullback ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone) ( is-pullback-pullback-cone) gap-standard-pullback-pullback-cone : domain-pullback-cone → standard-pullback (left-map-cospan-diagram 𝒮) (right-map-cospan-diagram 𝒮) gap-standard-pullback-pullback-cone = gap ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( cone-pullback-cone) map-inv-gap-standard-pullback-pullback-cone : standard-pullback (left-map-cospan-diagram 𝒮) (right-map-cospan-diagram 𝒮) → domain-pullback-cone map-inv-gap-standard-pullback-pullback-cone = map-inv-is-equiv is-pullback-pullback-cone is-section-map-inv-gap-standard-pullback-pullback-cone : is-section ( gap-standard-pullback-pullback-cone) ( map-inv-gap-standard-pullback-pullback-cone) is-section-map-inv-gap-standard-pullback-pullback-cone = is-section-map-inv-is-equiv is-pullback-pullback-cone is-retraction-map-inv-gap-standard-pullback-pullback-cone : is-retraction ( gap-standard-pullback-pullback-cone) ( map-inv-gap-standard-pullback-pullback-cone) is-retraction-map-inv-gap-standard-pullback-pullback-cone = is-retraction-map-inv-is-equiv is-pullback-pullback-cone
Horizontal pasting of pullback cones
module _ {l1 l2 l3 l4 l5 l6 : Level} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (i : X → Y) (j : Y → Z) (h : C → Z) where pasting-horizontal-pullback-cone : (c : pullback-cone (Y , C , Z , j , h) l1) → pullback-cone ( X , domain-pullback-cone (Y , C , Z , j , h) c , Y , i , vertical-map-pullback-cone (Y , C , Z , j , h) c) ( l2) → pullback-cone (X , C , Z , j ∘ i , h) l2 pasting-horizontal-pullback-cone ((A , a) , pb-A) ((B , b) , pb-B) = ( B , pasting-horizontal-cone i j h a b) , ( is-pullback-rectangle-is-pullback-left-square i j h a b pb-A pb-B)
Vertical pasting of pullback cones
module _ {l1 l2 l3 l4 l5 l6 : Level} {C : UU l3} {X : UU l4} {Y : UU l5} {Z : UU l6} (f : C → Z) (g : Y → Z) (h : X → Y) where pasting-vertical-pullback-cone : (c : pullback-cone (C , Y , Z , f , g) l1) → pullback-cone ( domain-pullback-cone (C , Y , Z , f , g) c , X , Y , horizontal-map-pullback-cone (C , Y , Z , f , g) c , h) l2 → pullback-cone (C , X , Z , f , g ∘ h) l2 pasting-vertical-pullback-cone ((A , a) , pb-A) ((B , b) , pb-B) = ( B , pasting-vertical-cone f g h a b) , ( is-pullback-rectangle-is-pullback-top-square f g h a b pb-A pb-B)
The swapping function on pullback cones
swap-pullback-cone : {l1 l2 l3 l4 : Level} (𝒮 : cospan-diagram l1 l2 l3) → pullback-cone 𝒮 l4 → pullback-cone (swap-cospan-diagram 𝒮) l4 swap-pullback-cone 𝒮 ((C , c) , pb-C) = ( C , swap-cone (left-map-cospan-diagram 𝒮) (right-map-cospan-diagram 𝒮) c) , ( is-pullback-swap-cone ( left-map-cospan-diagram 𝒮) ( right-map-cospan-diagram 𝒮) ( c) ( pb-C))
The identity pullback cone over the identity cospan diagram
id-pullback-cone : {l : Level} (A : UU l) → pullback-cone (id-cospan-diagram A) l id-pullback-cone A = ((A , id-cone A) , is-pullback-id-cone A)
Table of files about pullbacks
The following table lists files that are about pullbacks as a general concept.
Recent changes
- 2024-10-27. Fredrik Bakke. Functoriality of morphisms of arrows (#1130).