Positive proper closed intervals in the real numbers
Content created by Louis Wasserman.
Created on 2026-02-11.
Last modified on 2026-02-11.
module real-numbers.positive-proper-closed-intervals-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import real-numbers.absolute-value-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.positive-real-numbers open import real-numbers.proper-closed-intervals-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
A proper closed interval in the real numbers is positive¶ if all its elements are positive, or equivalently, if its lower bound is positive.
Definition
is-positive-prop-proper-closed-interval-ℝ : {l1 l2 : Level} → proper-closed-interval-ℝ l1 l2 → Prop l1 is-positive-prop-proper-closed-interval-ℝ (a , _ , _) = is-positive-prop-ℝ a is-positive-proper-closed-interval-ℝ : {l1 l2 : Level} → proper-closed-interval-ℝ l1 l2 → UU l1 is-positive-proper-closed-interval-ℝ (a , _ , _) = is-positive-ℝ a positive-proper-closed-interval-ℝ : (l1 l2 : Level) → UU (lsuc (l1 ⊔ l2)) positive-proper-closed-interval-ℝ l1 l2 = type-subtype (is-positive-prop-proper-closed-interval-ℝ {l1} {l2}) module _ {l1 l2 : Level} (([a,b] , 0<a) : positive-proper-closed-interval-ℝ l1 l2) where proper-closed-interval-positive-proper-closed-interval-ℝ : proper-closed-interval-ℝ l1 l2 proper-closed-interval-positive-proper-closed-interval-ℝ = [a,b] is-positive-proper-closed-interval-positive-proper-closed-interval-ℝ : is-positive-proper-closed-interval-ℝ ( proper-closed-interval-positive-proper-closed-interval-ℝ) is-positive-proper-closed-interval-positive-proper-closed-interval-ℝ = 0<a type-positive-proper-closed-interval-ℝ : {l1 l2 : Level} (l : Level) → positive-proper-closed-interval-ℝ l1 l2 → UU (l1 ⊔ l2 ⊔ lsuc l) type-positive-proper-closed-interval-ℝ l ([a,b] , _) = type-proper-closed-interval-ℝ l [a,b]
Properties
The bounds of a positive closed interval are positive
positive-lower-bound-is-positive-proper-closed-interval-ℝ : {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) → is-positive-proper-closed-interval-ℝ [a,b] → ℝ⁺ l1 positive-lower-bound-is-positive-proper-closed-interval-ℝ (a , _ , _) 0<a = ( a , 0<a) positive-upper-bound-is-positive-proper-closed-interval-ℝ : {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) → is-positive-proper-closed-interval-ℝ [a,b] → ℝ⁺ l2 positive-upper-bound-is-positive-proper-closed-interval-ℝ (a , b , a<b) 0<a = ( b , transitive-le-ℝ zero-ℝ a b a<b 0<a)
Elements of a positive closed interval are positive
abstract is-positive-is-in-positive-proper-closed-interval-ℝ : {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) → is-positive-proper-closed-interval-ℝ [a,b] → (x : ℝ l3) → is-in-proper-closed-interval-ℝ [a,b] x → is-positive-ℝ x is-positive-is-in-positive-proper-closed-interval-ℝ (a , _ , _) 0<a x (a≤x , _) = concatenate-le-leq-ℝ zero-ℝ a x 0<a a≤x positive-real-type-is-positive-proper-closed-interval-ℝ : {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) → is-positive-proper-closed-interval-ℝ [a,b] → type-proper-closed-interval-ℝ l3 [a,b] → ℝ⁺ l3 positive-real-type-is-positive-proper-closed-interval-ℝ [a,b] 0<a (x , a≤x≤b) = ( x , is-positive-is-in-positive-proper-closed-interval-ℝ [a,b] 0<a x a≤x≤b)
The absolute value of elements of a positive closed interval is bounded by the upper bound
abstract upper-bound-abs-is-in-positive-proper-closed-interval-ℝ : {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) → is-positive-proper-closed-interval-ℝ [a,b] → (x : ℝ l3) → is-in-proper-closed-interval-ℝ [a,b] x → leq-ℝ (abs-ℝ x) (upper-bound-proper-closed-interval-ℝ [a,b]) upper-bound-abs-is-in-positive-proper-closed-interval-ℝ (a , b , a<b) 0<a x (a≤x , x≤b) = inv-tr ( λ y → leq-ℝ y b) ( abs-real-ℝ⁺ (x , concatenate-le-leq-ℝ zero-ℝ a x 0<a a≤x)) ( x≤b)
Recent changes
- 2026-02-11. Louis Wasserman. The derivative of the reciprocal function (#1779).