Positive proper closed intervals in the real numbers

Content created by Louis Wasserman.

Created on 2026-02-11.
Last modified on 2026-02-11.

module real-numbers.positive-proper-closed-intervals-real-numbers where
Imports
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import real-numbers.absolute-value-real-numbers
open import real-numbers.dedekind-real-numbers
open import real-numbers.inequality-real-numbers
open import real-numbers.positive-real-numbers
open import real-numbers.proper-closed-intervals-real-numbers
open import real-numbers.rational-real-numbers
open import real-numbers.strict-inequality-real-numbers

Idea

A proper closed interval in the real numbers is positive if all its elements are positive, or equivalently, if its lower bound is positive.

Definition

is-positive-prop-proper-closed-interval-ℝ :
  {l1 l2 : Level}  proper-closed-interval-ℝ l1 l2  Prop l1
is-positive-prop-proper-closed-interval-ℝ (a , _ , _) = is-positive-prop-ℝ a

is-positive-proper-closed-interval-ℝ :
  {l1 l2 : Level}  proper-closed-interval-ℝ l1 l2  UU l1
is-positive-proper-closed-interval-ℝ (a , _ , _) = is-positive-ℝ a

positive-proper-closed-interval-ℝ : (l1 l2 : Level)  UU (lsuc (l1  l2))
positive-proper-closed-interval-ℝ l1 l2 =
  type-subtype (is-positive-prop-proper-closed-interval-ℝ {l1} {l2})

module _
  {l1 l2 : Level}
  (([a,b] , 0<a) : positive-proper-closed-interval-ℝ l1 l2)
  where

  proper-closed-interval-positive-proper-closed-interval-ℝ :
    proper-closed-interval-ℝ l1 l2
  proper-closed-interval-positive-proper-closed-interval-ℝ = [a,b]

  is-positive-proper-closed-interval-positive-proper-closed-interval-ℝ :
    is-positive-proper-closed-interval-ℝ
      ( proper-closed-interval-positive-proper-closed-interval-ℝ)
  is-positive-proper-closed-interval-positive-proper-closed-interval-ℝ = 0<a

type-positive-proper-closed-interval-ℝ :
  {l1 l2 : Level} (l : Level)  positive-proper-closed-interval-ℝ l1 l2 
  UU (l1  l2  lsuc l)
type-positive-proper-closed-interval-ℝ l ([a,b] , _) =
  type-proper-closed-interval-ℝ l [a,b]

Properties

The bounds of a positive closed interval are positive

positive-lower-bound-is-positive-proper-closed-interval-ℝ :
  {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) 
  is-positive-proper-closed-interval-ℝ [a,b]  ℝ⁺ l1
positive-lower-bound-is-positive-proper-closed-interval-ℝ (a , _ , _) 0<a =
  ( a , 0<a)

positive-upper-bound-is-positive-proper-closed-interval-ℝ :
  {l1 l2 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) 
  is-positive-proper-closed-interval-ℝ [a,b]  ℝ⁺ l2
positive-upper-bound-is-positive-proper-closed-interval-ℝ (a , b , a<b) 0<a =
  ( b , transitive-le-ℝ zero-ℝ a b a<b 0<a)

Elements of a positive closed interval are positive

abstract
  is-positive-is-in-positive-proper-closed-interval-ℝ :
    {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) 
    is-positive-proper-closed-interval-ℝ [a,b] 
    (x :  l3)  is-in-proper-closed-interval-ℝ [a,b] x  is-positive-ℝ x
  is-positive-is-in-positive-proper-closed-interval-ℝ
    (a , _ , _) 0<a x (a≤x , _) =
    concatenate-le-leq-ℝ zero-ℝ a x 0<a a≤x

positive-real-type-is-positive-proper-closed-interval-ℝ :
  {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) 
  is-positive-proper-closed-interval-ℝ [a,b] 
  type-proper-closed-interval-ℝ l3 [a,b]  ℝ⁺ l3
positive-real-type-is-positive-proper-closed-interval-ℝ [a,b] 0<a (x , a≤x≤b) =
  ( x , is-positive-is-in-positive-proper-closed-interval-ℝ [a,b] 0<a x a≤x≤b)

The absolute value of elements of a positive closed interval is bounded by the upper bound

abstract
  upper-bound-abs-is-in-positive-proper-closed-interval-ℝ :
    {l1 l2 l3 : Level} ([a,b] : proper-closed-interval-ℝ l1 l2) 
    is-positive-proper-closed-interval-ℝ [a,b] 
    (x :  l3)  is-in-proper-closed-interval-ℝ [a,b] x 
    leq-ℝ (abs-ℝ x) (upper-bound-proper-closed-interval-ℝ [a,b])
  upper-bound-abs-is-in-positive-proper-closed-interval-ℝ
    (a , b , a<b) 0<a x (a≤x , x≤b) =
    inv-tr
      ( λ y  leq-ℝ y b)
      ( abs-real-ℝ⁺ (x , concatenate-le-leq-ℝ zero-ℝ a x 0<a a≤x))
      ( x≤b)

Recent changes