The action on Cauchy sequences of uniformly continuous maps between metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-07.
Last modified on 2026-01-07.
module metric-spaces.action-on-cauchy-sequences-uniformly-continuous-maps-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.universe-levels open import lists.sequences open import metric-spaces.action-on-modulated-cauchy-sequences-modulated-uniformly-continuous-maps-metric-spaces open import metric-spaces.cauchy-sequences-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.modulated-cauchy-sequences-metric-spaces open import metric-spaces.sequences-metric-spaces open import metric-spaces.uniformly-continuous-maps-metric-spaces
Idea
The composition of a uniformly continuous map between metric spaces and a Cauchy sequence is a Cauchy sequence.
Proof
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') (f : uniformly-continuous-map-Metric-Space A B) (x : cauchy-sequence-Metric-Space A) where sequence-map-cauchy-sequence-uniformly-continuous-map-Metric-Space : sequence-type-Metric-Space B sequence-map-cauchy-sequence-uniformly-continuous-map-Metric-Space = map-sequence ( map-uniformly-continuous-map-Metric-Space A B f) ( sequence-cauchy-sequence-Metric-Space A x) abstract is-cauchy-sequence-map-cauchy-sequence-uniformly-continuous-map-Metric-Space : is-cauchy-sequence-Metric-Space ( B) ( sequence-map-cauchy-sequence-uniformly-continuous-map-Metric-Space) is-cauchy-sequence-map-cauchy-sequence-uniformly-continuous-map-Metric-Space = map-binary-trunc-Prop ( λ μf μx → cauchy-modulus-map-modulated-cauchy-sequence-modulated-ucont-map-Metric-Space ( A) ( B) ( map-uniformly-continuous-map-Metric-Space A B f , μf) ( sequence-cauchy-sequence-Metric-Space A x , μx)) ( is-uniformly-continuous-map-uniformly-continuous-map-Metric-Space ( A) ( B) ( f)) ( is-cauchy-sequence-sequence-cauchy-sequence-Metric-Space A x) map-cauchy-sequence-uniformly-continuous-map-Metric-Space : cauchy-sequence-Metric-Space B map-cauchy-sequence-uniformly-continuous-map-Metric-Space = ( sequence-map-cauchy-sequence-uniformly-continuous-map-Metric-Space , is-cauchy-sequence-map-cauchy-sequence-uniformly-continuous-map-Metric-Space)
See also
Recent changes
- 2026-01-07. Louis Wasserman and Fredrik Bakke. Refactor Cauchy sequences (#1768).