Acyclic types
Content created by Egbert Rijke, Tom de Jong and Fredrik Bakke.
Created on 2023-04-26.
Last modified on 2023-12-01.
module synthetic-homotopy-theory.acyclic-types where
Imports
open import foundation.contractible-types open import foundation.equivalences open import foundation.propositions open import foundation.retracts-of-types open import foundation.unit-type open import foundation.universe-levels open import synthetic-homotopy-theory.functoriality-suspensions open import synthetic-homotopy-theory.suspensions-of-types
Idea
A type A
is said to be acyclic if its
suspension is
contractible.
Definition
is-acyclic-Prop : {l : Level} → UU l → Prop l is-acyclic-Prop A = is-contr-Prop (suspension A) is-acyclic : {l : Level} → UU l → UU l is-acyclic A = type-Prop (is-acyclic-Prop A) is-prop-is-acyclic : {l : Level} (A : UU l) → is-prop (is-acyclic A) is-prop-is-acyclic A = is-prop-type-Prop (is-acyclic-Prop A)
Properties
Being acyclic is invariant under equivalence
is-acyclic-equiv : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A ≃ B → is-acyclic B → is-acyclic A is-acyclic-equiv {B = B} e ac = is-contr-equiv (suspension B) (equiv-suspension e) ac is-acyclic-equiv' : {l1 l2 : Level} {A : UU l1} {B : UU l2} → A ≃ B → is-acyclic A → is-acyclic B is-acyclic-equiv' e = is-acyclic-equiv (inv-equiv e)
Acyclic types are closed under retracts
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-acyclic-retract-of : A retract-of B → is-acyclic B → is-acyclic A is-acyclic-retract-of R ac = is-contr-retract-of (suspension B) (retract-of-suspension-retract-of R) ac
Contractible types are acyclic
is-acyclic-is-contr : {l : Level} (A : UU l) → is-contr A → is-acyclic A is-acyclic-is-contr A = is-contr-suspension-is-contr is-acyclic-unit : is-acyclic unit is-acyclic-unit = is-acyclic-is-contr unit is-contr-unit
See also
- Acyclic maps
k
-acyclic types- Dependent epimorphisms
- Epimorphisms
- Epimorphisms with respect to sets
- Epimorphisms with respect to truncated types
Table of files related to cyclic types, groups, and rings
Recent changes
- 2023-12-01. Tom de Jong. Closure properties of acyclic maps and types (#960).
- 2023-11-27. Tom de Jong.
k
-acyclic types (#948). - 2023-11-09. Egbert Rijke and Fredrik Bakke. Refactoring of retractions, sections, and equivalences, and adding the 6-for-2 property of equivalences (#903).
- 2023-11-08. Tom de Jong. Acyclic types are closed under retracts (#908).
- 2023-11-06. Tom de Jong. Acyclic types are closed under equivalences (#901).