The metric space of maps between metric spaces

Content created by Fredrik Bakke and Louis Wasserman.

Created on 2026-01-01.
Last modified on 2026-01-01.

module metric-spaces.metric-space-of-maps-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers

open import foundation.dependent-pair-types
open import foundation.universe-levels

open import metric-spaces.cauchy-approximations-metric-spaces
open import metric-spaces.convergent-cauchy-approximations-metric-spaces
open import metric-spaces.dependent-products-metric-spaces
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.limits-of-cauchy-approximations-metric-spaces
open import metric-spaces.maps-metric-spaces
open import metric-spaces.metric-spaces

Idea

Maps between metric spaces inherit the product metric structure of their codomain. This defines the metric space of maps between metric spaces.

Definitions

The metric space of maps between metric spaces

module _
  {l1 l2 l1' l2' : Level}
  (A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  where

  metric-space-of-maps-Metric-Space : Metric-Space (l1  l1') (l1  l2')
  metric-space-of-maps-Metric-Space =
    Π-Metric-Space (type-Metric-Space A)  _  B)

Properties

The partial applications of a Cauchy approximation of maps form a Cauchy approximation

module _
  { l1 l2 l1' l2' : Level}
  ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  ( f :
    cauchy-approximation-Metric-Space
      ( metric-space-of-maps-Metric-Space A B))
  ( x : type-Metric-Space A)
  where

  ev-cauchy-approximation-map-Metric-Space :
    cauchy-approximation-Metric-Space B
  ev-cauchy-approximation-map-Metric-Space =
    ev-cauchy-approximation-Π-Metric-Space
      ( type-Metric-Space A)
      ( λ _  B)
      ( f)
      ( x)

A map is the limit of a Cauchy approximation of maps if and only if it is the pointwise limit of its partial applications

module _
  { l1 l2 l1' l2' : Level}
  ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2')
  ( f :
    cauchy-approximation-Metric-Space
      ( metric-space-of-maps-Metric-Space A B))
  ( g : map-Metric-Space A B)
  where

  is-pointwise-limit-is-limit-cauchy-approximation-map-Metric-Space :
    is-limit-cauchy-approximation-Metric-Space
      ( metric-space-of-maps-Metric-Space A B)
      ( f)
      ( g) 
    (x : type-Metric-Space A) 
    is-limit-cauchy-approximation-Metric-Space
      ( B)
      ( ev-cauchy-approximation-map-Metric-Space A B f x)
      ( g x)
  is-pointwise-limit-is-limit-cauchy-approximation-map-Metric-Space =
    is-pointwise-limit-is-limit-cauchy-approximation-Π-Metric-Space
      ( type-Metric-Space A)
      ( λ _  B)
      ( f)
      ( g)

  is-limit-is-pointwise-limit-cauchy-approximation-map-Metric-Space :
    ( (x : type-Metric-Space A) 
      is-limit-cauchy-approximation-Metric-Space
        ( B)
        ( ev-cauchy-approximation-map-Metric-Space A B f x)
        ( g x)) 
    is-limit-cauchy-approximation-Metric-Space
      ( metric-space-of-maps-Metric-Space A B)
      ( f)
      ( g)
  is-limit-is-pointwise-limit-cauchy-approximation-map-Metric-Space =
    is-limit-is-pointwise-limit-cauchy-approximation-Π-Metric-Space
      ( type-Metric-Space A)
      ( λ _  B)
      ( f)
      ( g)

Recent changes