The metric space of maps between metric spaces
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-01.
Last modified on 2026-01-01.
module metric-spaces.metric-space-of-maps-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.dependent-products-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.limits-of-cauchy-approximations-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces
Idea
Maps between metric spaces inherit the product metric structure of their codomain. This defines the metric space of maps between metric spaces¶.
Definitions
The metric space of maps between metric spaces
module _ {l1 l2 l1' l2' : Level} (A : Metric-Space l1 l2) (B : Metric-Space l1' l2') where metric-space-of-maps-Metric-Space : Metric-Space (l1 ⊔ l1') (l1 ⊔ l2') metric-space-of-maps-Metric-Space = Π-Metric-Space (type-Metric-Space A) (λ _ → B)
Properties
The partial applications of a Cauchy approximation of maps form a Cauchy approximation
module _ { l1 l2 l1' l2' : Level} ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2') ( f : cauchy-approximation-Metric-Space ( metric-space-of-maps-Metric-Space A B)) ( x : type-Metric-Space A) where ev-cauchy-approximation-map-Metric-Space : cauchy-approximation-Metric-Space B ev-cauchy-approximation-map-Metric-Space = ev-cauchy-approximation-Π-Metric-Space ( type-Metric-Space A) ( λ _ → B) ( f) ( x)
A map is the limit of a Cauchy approximation of maps if and only if it is the pointwise limit of its partial applications
module _ { l1 l2 l1' l2' : Level} ( A : Metric-Space l1 l2) (B : Metric-Space l1' l2') ( f : cauchy-approximation-Metric-Space ( metric-space-of-maps-Metric-Space A B)) ( g : map-Metric-Space A B) where is-pointwise-limit-is-limit-cauchy-approximation-map-Metric-Space : is-limit-cauchy-approximation-Metric-Space ( metric-space-of-maps-Metric-Space A B) ( f) ( g) → (x : type-Metric-Space A) → is-limit-cauchy-approximation-Metric-Space ( B) ( ev-cauchy-approximation-map-Metric-Space A B f x) ( g x) is-pointwise-limit-is-limit-cauchy-approximation-map-Metric-Space = is-pointwise-limit-is-limit-cauchy-approximation-Π-Metric-Space ( type-Metric-Space A) ( λ _ → B) ( f) ( g) is-limit-is-pointwise-limit-cauchy-approximation-map-Metric-Space : ( (x : type-Metric-Space A) → is-limit-cauchy-approximation-Metric-Space ( B) ( ev-cauchy-approximation-map-Metric-Space A B f x) ( g x)) → is-limit-cauchy-approximation-Metric-Space ( metric-space-of-maps-Metric-Space A B) ( f) ( g) is-limit-is-pointwise-limit-cauchy-approximation-map-Metric-Space = is-limit-is-pointwise-limit-cauchy-approximation-Π-Metric-Space ( type-Metric-Space A) ( λ _ → B) ( f) ( g)
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).