Symmetric globular types
Content created by Egbert Rijke.
Created on 2024-11-17.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.symmetric-globular-types where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import globular-types.globular-types
Idea
We say a globular type is
symmetric¶
if there is a symmetry action on its -cells for positive , mapping
-cells from x
to y
to -cells from y
to x
.
Definition
Symmetry structure on a globular type
record is-symmetric-Globular-Type {l1 l2 : Level} (G : Globular-Type l1 l2) : UU (l1 ⊔ l2) where coinductive field is-symmetric-1-cell-is-symmetric-Globular-Type : is-symmetric (1-cell-Globular-Type G) field is-symmetric-1-cell-globular-type-is-symmetric-Globular-Type : (x y : 0-cell-Globular-Type G) → is-symmetric-Globular-Type (1-cell-globular-type-Globular-Type G x y) open is-symmetric-Globular-Type public
Symmetric globular types
record Symmetric-Globular-Type (l1 l2 : Level) : UU (lsuc l1 ⊔ lsuc l2) where field globular-type-Symmetric-Globular-Type : Globular-Type l1 l2 0-cell-Symmetric-Globular-Type : UU l1 0-cell-Symmetric-Globular-Type = 0-cell-Globular-Type globular-type-Symmetric-Globular-Type 1-cell-globular-type-Symmetric-Globular-Type : (x y : 0-cell-Symmetric-Globular-Type) → Globular-Type l2 l2 1-cell-globular-type-Symmetric-Globular-Type = 1-cell-globular-type-Globular-Type globular-type-Symmetric-Globular-Type 1-cell-Symmetric-Globular-Type : (x y : 0-cell-Symmetric-Globular-Type) → UU l2 1-cell-Symmetric-Globular-Type = 1-cell-Globular-Type globular-type-Symmetric-Globular-Type field is-symmetric-Symmetric-Globular-Type : is-symmetric-Globular-Type globular-type-Symmetric-Globular-Type inv-1-cell-Symmetric-Globular-Type : {x y : 0-cell-Symmetric-Globular-Type} → 1-cell-Symmetric-Globular-Type x y → 1-cell-Symmetric-Globular-Type y x inv-1-cell-Symmetric-Globular-Type = is-symmetric-1-cell-is-symmetric-Globular-Type is-symmetric-Symmetric-Globular-Type _ _ is-symmetric-1-cell-globular-type-Symmetric-Globular-Type : (x y : 0-cell-Symmetric-Globular-Type) → is-symmetric-Globular-Type ( 1-cell-globular-type-Symmetric-Globular-Type x y) is-symmetric-1-cell-globular-type-Symmetric-Globular-Type = is-symmetric-1-cell-globular-type-is-symmetric-Globular-Type is-symmetric-Symmetric-Globular-Type 1-cell-symmetric-globular-type-Symmetric-Globular-Type : (x y : 0-cell-Symmetric-Globular-Type) → Symmetric-Globular-Type l2 l2 globular-type-Symmetric-Globular-Type ( 1-cell-symmetric-globular-type-Symmetric-Globular-Type x y) = 1-cell-globular-type-Symmetric-Globular-Type x y is-symmetric-Symmetric-Globular-Type ( 1-cell-symmetric-globular-type-Symmetric-Globular-Type x y) = is-symmetric-1-cell-globular-type-Symmetric-Globular-Type x y open Symmetric-Globular-Type public
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-11-17. Egbert Rijke. chore: Moving files about globular types to a new namespace (#1223).