Symmetric globular types

Created on 2024-11-17.
Last modified on 2024-11-17.

{-# OPTIONS --guardedness #-}

module globular-types.symmetric-globular-types where
Imports
open import foundation.binary-relations
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.universe-levels

open import globular-types.globular-types

Idea

We say a globular type is symmetric if there is a symmetry action on its -cells for positive , mapping -cells from x to y to -cells from y to x.

Definition

Symmetry structure on a globular structure

record
  is-symmetric-globular-structure
  {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A) : UU (l1  l2)
  where
  coinductive
  field
    is-symmetric-1-cell-is-symmetric-globular-structure :
      is-symmetric (1-cell-globular-structure G)
    is-symmetric-globular-structure-1-cell-is-symmetric-globular-structure :
      (x y : A) 
      is-symmetric-globular-structure
        ( globular-structure-1-cell-globular-structure G x y)

open is-symmetric-globular-structure public

module _
  {l1 l2 : Level} {A : UU l1} {G : globular-structure l2 A}
  (r : is-symmetric-globular-structure G)
  where

  sym-1-cell-is-symmetric-globular-structure :
    {x y : A} 
    1-cell-globular-structure G x y  1-cell-globular-structure G y x
  sym-1-cell-is-symmetric-globular-structure {x} {y} =
    is-symmetric-1-cell-is-symmetric-globular-structure r x y

  sym-2-cell-is-symmetric-globular-structure :
    {x y : A} {f g : 1-cell-globular-structure G x y} 
    2-cell-globular-structure G f g 
    2-cell-globular-structure G g f
  sym-2-cell-is-symmetric-globular-structure {x} {y} {f} {g} =
    is-symmetric-1-cell-is-symmetric-globular-structure
      ( is-symmetric-globular-structure-1-cell-is-symmetric-globular-structure
        ( r)
        ( x)
        ( y))
      ( f)
      ( g)

The type of symmetric globular structures

symmetric-globular-structure :
  {l1 : Level} (l2 : Level) (A : UU l1)  UU (l1  lsuc l2)
symmetric-globular-structure l2 A =
  Σ (globular-structure l2 A) (is-symmetric-globular-structure)

Examples

The symmetric globular structure on a type given by its identity types

is-symmetric-globular-structure-Id :
  {l : Level} (A : UU l) 
  is-symmetric-globular-structure (globular-structure-Id A)
is-symmetric-globular-structure-Id A =
  λ where
  .is-symmetric-1-cell-is-symmetric-globular-structure x y 
    inv
  .is-symmetric-globular-structure-1-cell-is-symmetric-globular-structure x y 
    is-symmetric-globular-structure-Id (x  y)

Recent changes