Symmetric globular types
Created on 2024-11-17.
Last modified on 2024-11-17.
{-# OPTIONS --guardedness #-} module globular-types.symmetric-globular-types where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import globular-types.globular-types
Idea
We say a globular type is
symmetric¶
if there is a symmetry action on its -cells for positive , mapping
-cells from x
to y
to -cells from y
to x
.
Definition
Symmetry structure on a globular structure
record is-symmetric-globular-structure {l1 l2 : Level} {A : UU l1} (G : globular-structure l2 A) : UU (l1 ⊔ l2) where coinductive field is-symmetric-1-cell-is-symmetric-globular-structure : is-symmetric (1-cell-globular-structure G) is-symmetric-globular-structure-1-cell-is-symmetric-globular-structure : (x y : A) → is-symmetric-globular-structure ( globular-structure-1-cell-globular-structure G x y) open is-symmetric-globular-structure public module _ {l1 l2 : Level} {A : UU l1} {G : globular-structure l2 A} (r : is-symmetric-globular-structure G) where sym-1-cell-is-symmetric-globular-structure : {x y : A} → 1-cell-globular-structure G x y → 1-cell-globular-structure G y x sym-1-cell-is-symmetric-globular-structure {x} {y} = is-symmetric-1-cell-is-symmetric-globular-structure r x y sym-2-cell-is-symmetric-globular-structure : {x y : A} {f g : 1-cell-globular-structure G x y} → 2-cell-globular-structure G f g → 2-cell-globular-structure G g f sym-2-cell-is-symmetric-globular-structure {x} {y} {f} {g} = is-symmetric-1-cell-is-symmetric-globular-structure ( is-symmetric-globular-structure-1-cell-is-symmetric-globular-structure ( r) ( x) ( y)) ( f) ( g)
The type of symmetric globular structures
symmetric-globular-structure : {l1 : Level} (l2 : Level) (A : UU l1) → UU (l1 ⊔ lsuc l2) symmetric-globular-structure l2 A = Σ (globular-structure l2 A) (is-symmetric-globular-structure)
Examples
The symmetric globular structure on a type given by its identity types
is-symmetric-globular-structure-Id : {l : Level} (A : UU l) → is-symmetric-globular-structure (globular-structure-Id A) is-symmetric-globular-structure-Id A = λ where .is-symmetric-1-cell-is-symmetric-globular-structure x y → inv .is-symmetric-globular-structure-1-cell-is-symmetric-globular-structure x y → is-symmetric-globular-structure-Id (x = y)
Recent changes
- 2024-11-17. Egbert Rijke. chore: Moving files about globular types to a new namespace (#1223).