Bottom elements in large posets
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.bottom-elements-large-posets where
Imports
open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets
Idea
We say that a large poset P
has a
least element¶
if it comes equipped with an element t : type-Large-Poset P lzero
such that
t ≤ x
holds for every x : P
.
Definition
The predicate on elements of posets of being a bottom element
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) where is-bottom-element-Large-Poset : {l1 : Level} → type-Large-Poset P l1 → UUω is-bottom-element-Large-Poset x = {l : Level} (y : type-Large-Poset P l) → leq-Large-Poset P x y
The predicate on posets of having a bottom element
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) where record has-bottom-element-Large-Poset : UUω where field bottom-has-bottom-element-Large-Poset : type-Large-Poset P lzero is-bottom-element-bottom-has-bottom-element-Large-Poset : is-bottom-element-Large-Poset P bottom-has-bottom-element-Large-Poset open has-bottom-element-Large-Poset public
Properties
If P
is a family of large posets, then Π-Large-Poset P
has a bottom element
module _ {α : Level → Level} {β : Level → Level → Level} {l1 : Level} {I : UU l1} (P : I → Large-Poset α β) where has-bottom-element-Π-Large-Poset : ((i : I) → has-bottom-element-Large-Poset (P i)) → has-bottom-element-Large-Poset (Π-Large-Poset P) bottom-has-bottom-element-Large-Poset ( has-bottom-element-Π-Large-Poset H) i = bottom-has-bottom-element-Large-Poset (H i) is-bottom-element-bottom-has-bottom-element-Large-Poset ( has-bottom-element-Π-Large-Poset H) x i = is-bottom-element-bottom-has-bottom-element-Large-Poset (H i) (x i)
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).