Bottom elements in large posets
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2024-11-20.
Last modified on 2026-02-15.
module order-theory.bottom-elements-large-posets where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import order-theory.dependent-products-large-posets open import order-theory.large-posets open import order-theory.similarity-of-elements-large-posets
Idea
We say that a large poset P has a
least element¶
if for every universe level l, it comes equipped with an element
t : type-Large-Poset P l such that t ≤ x holds for every x : P l.
Definition
The predicate on elements of posets of being a bottom element
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) where is-bottom-element-Large-Poset : {l1 : Level} → type-Large-Poset P l1 → UUω is-bottom-element-Large-Poset x = {l : Level} (y : type-Large-Poset P l) → leq-Large-Poset P x y
The predicate on posets of having a bottom element
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) where record has-bottom-element-Large-Poset : UUω where field bottom-has-bottom-element-Large-Poset : (l : Level) → type-Large-Poset P l is-bottom-element-bottom-has-bottom-element-Large-Poset : (l : Level) → is-bottom-element-Large-Poset ( P) ( bottom-has-bottom-element-Large-Poset l) open has-bottom-element-Large-Poset public
Properties
If P is a family of large posets, then Π-Large-Poset P has a bottom element
module _ {α : Level → Level} {β : Level → Level → Level} {l1 : Level} {I : UU l1} (P : I → Large-Poset α β) where has-bottom-element-Π-Large-Poset : ((i : I) → has-bottom-element-Large-Poset (P i)) → has-bottom-element-Large-Poset (Π-Large-Poset P) bottom-has-bottom-element-Large-Poset ( has-bottom-element-Π-Large-Poset H) l i = bottom-has-bottom-element-Large-Poset (H i) l is-bottom-element-bottom-has-bottom-element-Large-Poset ( has-bottom-element-Π-Large-Poset H) x l i = is-bottom-element-bottom-has-bottom-element-Large-Poset (H i) x (l i)
The bottom elements at any two universe levels are similar
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) (B : has-bottom-element-Large-Poset P) where abstract sim-bottom-element-Large-Poset : (l1 l2 : Level) → sim-Large-Poset P ( bottom-has-bottom-element-Large-Poset B l1) ( bottom-has-bottom-element-Large-Poset B l2) sim-bottom-element-Large-Poset l1 l2 = ( is-bottom-element-bottom-has-bottom-element-Large-Poset B l1 ( bottom-has-bottom-element-Large-Poset B l2) , is-bottom-element-bottom-has-bottom-element-Large-Poset B l2 ( bottom-has-bottom-element-Large-Poset B l1))
Recent changes
- 2026-02-15. Louis Wasserman. The maximum of finite families of nonnegative numbers (#1815).
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).