Bottom elements in large posets

Content created by Fredrik Bakke and Louis Wasserman.

Created on 2024-11-20.
Last modified on 2026-02-15.

module order-theory.bottom-elements-large-posets where
Imports
open import foundation.dependent-pair-types
open import foundation.universe-levels

open import order-theory.dependent-products-large-posets
open import order-theory.large-posets
open import order-theory.similarity-of-elements-large-posets

Idea

We say that a large poset P has a least element if for every universe level l, it comes equipped with an element t : type-Large-Poset P l such that t ≤ x holds for every x : P l.

Definition

The predicate on elements of posets of being a bottom element

module _
  {α : Level  Level} {β : Level  Level  Level} (P : Large-Poset α β)
  where

  is-bottom-element-Large-Poset :
    {l1 : Level}  type-Large-Poset P l1  UUω
  is-bottom-element-Large-Poset x =
    {l : Level} (y : type-Large-Poset P l)  leq-Large-Poset P x y

The predicate on posets of having a bottom element

module _
  {α : Level  Level} {β : Level  Level  Level}
  (P : Large-Poset α β)
  where

  record
    has-bottom-element-Large-Poset : UUω
    where
    field
      bottom-has-bottom-element-Large-Poset :
        (l : Level)  type-Large-Poset P l
      is-bottom-element-bottom-has-bottom-element-Large-Poset :
        (l : Level) 
        is-bottom-element-Large-Poset
          ( P)
          ( bottom-has-bottom-element-Large-Poset l)

  open has-bottom-element-Large-Poset public

Properties

If P is a family of large posets, then Π-Large-Poset P has a bottom element

module _
  {α : Level  Level} {β : Level  Level  Level}
  {l1 : Level} {I : UU l1} (P : I  Large-Poset α β)
  where

  has-bottom-element-Π-Large-Poset :
    ((i : I)  has-bottom-element-Large-Poset (P i)) 
    has-bottom-element-Large-Poset (Π-Large-Poset P)
  bottom-has-bottom-element-Large-Poset
    ( has-bottom-element-Π-Large-Poset H) l i =
    bottom-has-bottom-element-Large-Poset (H i) l
  is-bottom-element-bottom-has-bottom-element-Large-Poset
    ( has-bottom-element-Π-Large-Poset H) x l i =
    is-bottom-element-bottom-has-bottom-element-Large-Poset (H i) x (l i)

The bottom elements at any two universe levels are similar

module _
  {α : Level  Level} {β : Level  Level  Level}
  (P : Large-Poset α β)
  (B : has-bottom-element-Large-Poset P)
  where

  abstract
    sim-bottom-element-Large-Poset :
      (l1 l2 : Level) 
      sim-Large-Poset P
        ( bottom-has-bottom-element-Large-Poset B l1)
        ( bottom-has-bottom-element-Large-Poset B l2)
    sim-bottom-element-Large-Poset l1 l2 =
      ( is-bottom-element-bottom-has-bottom-element-Large-Poset B l1
          ( bottom-has-bottom-element-Large-Poset B l2) ,
        is-bottom-element-bottom-has-bottom-element-Large-Poset B l2
          ( bottom-has-bottom-element-Large-Poset B l1))

Recent changes