Localizations of rings
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides and Gregor Perčič.
Created on 2022-03-12.
Last modified on 2023-11-24.
module ring-theory.localizations-rings where
Imports
open import foundation.action-on-identifications-functions open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.fibers-of-maps open import foundation.functoriality-dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import ring-theory.homomorphisms-rings open import ring-theory.invertible-elements-rings open import ring-theory.rings open import ring-theory.subsets-rings
Localization at a specific element
We introduce homomorphisms that invert specific elements.
module _ {l1 l2 : Level} (R1 : Ring l1) (R2 : Ring l2) (x : type-Ring R1) (f : hom-Ring R1 R2) where inverts-element-hom-Ring : UU l2 inverts-element-hom-Ring = is-invertible-element-Ring R2 (map-hom-Ring R1 R2 f x) is-prop-inverts-element-hom-Ring : is-prop inverts-element-hom-Ring is-prop-inverts-element-hom-Ring = is-prop-is-invertible-element-Ring R2 (map-hom-Ring R1 R2 f x) inverts-element-hom-ring-Prop : Prop l2 pr1 inverts-element-hom-ring-Prop = inverts-element-hom-Ring pr2 inverts-element-hom-ring-Prop = is-prop-inverts-element-hom-Ring inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → type-Ring S inv-inverts-element-hom-Ring R S x f H = pr1 H is-left-inverse-inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → Id ( mul-Ring S ( inv-inverts-element-hom-Ring R S x f H) ( map-hom-Ring R S f x)) ( one-Ring S) is-left-inverse-inv-inverts-element-hom-Ring R S x f H = pr2 (pr2 H) is-right-inverse-inv-inverts-element-hom-Ring : {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → Id ( mul-Ring S ( map-hom-Ring R S f x) ( inv-inverts-element-hom-Ring R S x f H)) ( one-Ring S) is-right-inverse-inv-inverts-element-hom-Ring R S x f H = pr1 (pr2 H)
inverts-element-comp-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (g : hom-Ring S T) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → inverts-element-hom-Ring R T x (comp-hom-Ring R S T g f) inverts-element-comp-hom-Ring R S T x g f H = pair ( map-hom-Ring S T g (inv-inverts-element-hom-Ring R S x f H)) ( pair ( ( inv (preserves-mul-hom-Ring S T g)) ∙ ( ( ap ( map-hom-Ring S T g) ( is-right-inverse-inv-inverts-element-hom-Ring R S x f H)) ∙ ( preserves-one-hom-Ring S T g))) ( ( inv (preserves-mul-hom-Ring S T g)) ∙ ( ( ap ( map-hom-Ring S T g) ( is-left-inverse-inv-inverts-element-hom-Ring R S x f H)) ∙ ( preserves-one-hom-Ring S T g))))
The universal property of the localization of a ring at a single element
precomp-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → hom-Ring S T → Σ (hom-Ring R T) (inverts-element-hom-Ring R T x) pr1 (precomp-universal-property-localization-Ring R S T x f H g) = comp-hom-Ring R S T g f pr2 (precomp-universal-property-localization-Ring R S T x f H g) = inverts-element-comp-hom-Ring R S T x g f H universal-property-localization-Ring : (l : Level) {l1 l2 : Level} (R : Ring l1) (S : Ring l2) (x : type-Ring R) (f : hom-Ring R S) → inverts-element-hom-Ring R S x f → UU (lsuc l ⊔ l1 ⊔ l2) universal-property-localization-Ring l R S x f H = (T : Ring l) → is-equiv (precomp-universal-property-localization-Ring R S T x f H) unique-extension-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → is-contr ( Σ ( hom-Ring S T) ( λ g → htpy-hom-Ring R T (comp-hom-Ring R S T g f) h)) unique-extension-universal-property-localization-Ring R S T x f H up-f h K = is-contr-equiv' ( fiber ( precomp-universal-property-localization-Ring R S T x f H) ( pair h K)) ( equiv-tot ( λ g → ( extensionality-hom-Ring R T (comp-hom-Ring R S T g f) h) ∘e ( extensionality-type-subtype' ( inverts-element-hom-ring-Prop R T x) ( precomp-universal-property-localization-Ring R S T x f H g) ( pair h K)))) ( is-contr-map-is-equiv (up-f T) (pair h K)) center-unique-extension-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → Σ (hom-Ring S T) (λ g → htpy-hom-Ring R T (comp-hom-Ring R S T g f) h) center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K = center ( unique-extension-universal-property-localization-Ring R S T x f H up-f h K) map-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → universal-property-localization-Ring l3 R S x f H → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → hom-Ring S T map-universal-property-localization-Ring R S T x f H up-f h K = pr1 ( center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K) htpy-universal-property-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-Ring R S) (H : inverts-element-hom-Ring R S x f) → (up-f : universal-property-localization-Ring l3 R S x f H) → (h : hom-Ring R T) (K : inverts-element-hom-Ring R T x h) → htpy-hom-Ring ( R) ( T) ( comp-hom-Ring ( R) ( S) ( T) ( map-universal-property-localization-Ring R S T x f H up-f h K) ( f)) ( h) htpy-universal-property-localization-Ring R S T x f H up-f h K = pr2 ( center-unique-extension-universal-property-localization-Ring R S T x f H up-f h K)
The type of localizations of a ring at an element is contractible
{- is-equiv-up-localization-up-localization-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (x : type-Ring R) (f : hom-set-Ring R S) (inverts-f : inverts-element-hom-Ring R S x f) → (g : hom-set-Ring R T) (inverts-g : inverts-element-hom-Ring R T x g) → (h : hom-set-Ring S T) (H : htpy-hom-Ring R T (comp-hom-Ring R S T h f) g) → ({l : Level} → universal-property-localization-Ring l R S x f inverts-f) → ({l : Level} → universal-property-localization-Ring l R T x g inverts-g) → is-iso-Ring S T h is-equiv-up-localization-up-localization-Ring R S T x f inverts-f g inverts-g h H up-f up-g = {!is-iso-is-equiv-hom-Ring!} -}
Localization at a subset of a ring
inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) → (f : hom-Ring R S) → UU (l1 ⊔ l2 ⊔ l3) inverts-subset-hom-Ring R S P f = (x : type-Ring R) (p : type-Prop (P x)) → inverts-element-hom-Ring R S x f is-prop-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) → (f : hom-Ring R S) → is-prop (inverts-subset-hom-Ring R S P f) is-prop-inverts-subset-hom-Ring R S P f = is-prop-Π (λ x → is-prop-Π (λ p → is-prop-inverts-element-hom-Ring R S x f)) inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → type-Ring S inv-inverts-subset-hom-Ring R S P f H x p = inv-inverts-element-hom-Ring R S x f (H x p) is-left-inverse-inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → Id ( mul-Ring S ( inv-inverts-subset-hom-Ring R S P f H x p) ( map-hom-Ring R S f x)) ( one-Ring S) is-left-inverse-inv-inverts-subset-hom-Ring R S P f H x p = is-left-inverse-inv-inverts-element-hom-Ring R S x f (H x p) is-right-inverse-inv-inverts-subset-hom-Ring : {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) (x : type-Ring R) (p : type-Prop (P x)) → Id ( mul-Ring S ( map-hom-Ring R S f x) ( inv-inverts-subset-hom-Ring R S P f H x p)) ( one-Ring S) is-right-inverse-inv-inverts-subset-hom-Ring R S P f H x p = is-right-inverse-inv-inverts-element-hom-Ring R S x f (H x p) inverts-subset-comp-hom-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (P : subset-Ring l4 R) (g : hom-Ring S T) (f : hom-Ring R S) → inverts-subset-hom-Ring R S P f → inverts-subset-hom-Ring R T P (comp-hom-Ring R S T g f) inverts-subset-comp-hom-Ring R S T P g f H x p = inverts-element-comp-hom-Ring R S T x g f (H x p)
The universal property of the localization of a ring at a subset
precomp-universal-property-localization-subset-Ring : {l1 l2 l3 l4 : Level} (R : Ring l1) (S : Ring l2) (T : Ring l3) (P : subset-Ring l4 R) → (f : hom-Ring R S) (H : inverts-subset-hom-Ring R S P f) → hom-Ring S T → Σ (hom-Ring R T) (inverts-subset-hom-Ring R T P) pr1 (precomp-universal-property-localization-subset-Ring R S T P f H g) = comp-hom-Ring R S T g f pr2 (precomp-universal-property-localization-subset-Ring R S T P f H g) = inverts-subset-comp-hom-Ring R S T P g f H universal-property-localization-subset-Ring : (l : Level) {l1 l2 l3 : Level} (R : Ring l1) (S : Ring l2) (P : subset-Ring l3 R) (f : hom-Ring R S) → inverts-subset-hom-Ring R S P f → UU (lsuc l ⊔ l1 ⊔ l2 ⊔ l3) universal-property-localization-subset-Ring l R S P f H = (T : Ring l) → is-equiv (precomp-universal-property-localization-subset-Ring R S T P f H)
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).