Cauchy approximations in the Cauchy pseudocompletion of a pseudometric space
Content created by malarbol.
Created on 2025-12-25.
Last modified on 2025-12-25.
{-# OPTIONS --lossy-unification #-} module metric-spaces.cauchy-approximations-in-cauchy-pseudocompletions-of-pseudometric-spaces where
Imports
open import elementary-number-theory.addition-positive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.strict-inequality-positive-rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.action-on-cauchy-approximations-isometries-pseudometric-spaces open import metric-spaces.action-on-cauchy-approximations-short-maps-pseudometric-spaces open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.cauchy-pseudocompletion-of-pseudometric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations open import metric-spaces.short-functions-pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
Cauchy approximations in the Cauchy pseudocompletion of a pseudometric space have a limit.
Properties
Any Cauchy approximation in the Cauchy pseudocompletion of a pseudometric space has a limit
module _ { l1 l2 : Level} (M : Pseudometric-Space l1 l2) ( U : cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) where map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : ℚ⁺ → ℚ⁺ → type-Pseudometric-Space M map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ε = map-cauchy-approximation-Pseudometric-Space M ( map-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( U) ( ε)) is-cauchy-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : (δ ε d₁ d₂ : ℚ⁺) → neighborhood-Pseudometric-Space ( M) ( d₁ +ℚ⁺ d₂ +ℚ⁺ (δ +ℚ⁺ ε)) ( map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( δ) ( d₁)) ( map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( ε) ( d₂)) is-cauchy-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space = is-cauchy-approximation-map-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( U) map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : ℚ⁺ → type-Pseudometric-Space M map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space d = let (d₁ , d₂ , _) = split-ℚ⁺ d in map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space d₂ d₁ abstract is-cauchy-map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : is-cauchy-approximation-Pseudometric-Space ( M) ( map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space) is-cauchy-map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space δ ε = let (δ₁ , δ₂ , δ₁+δ₂=δ) = split-ℚ⁺ δ (ε₁ , ε₂ , ε₁+ε₂=ε) = split-ℚ⁺ ε lemma-δ+ε : ((δ₁ +ℚ⁺ ε₁) +ℚ⁺ (δ₂ +ℚ⁺ ε₂)) = δ +ℚ⁺ ε lemma-δ+ε = ( interchange-law-add-add-ℚ⁺ δ₁ ε₁ δ₂ ε₂) ∙ ( ap-binary add-ℚ⁺ δ₁+δ₂=δ ε₁+ε₂=ε) in tr ( is-upper-bound-dist-Pseudometric-Space ( M) ( map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( δ)) ( map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( ε))) ( lemma-δ+ε) ( is-cauchy-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space _ _ _ _) lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : cauchy-approximation-Pseudometric-Space M lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space = ( map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space , is-cauchy-map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space) abstract is-limit-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : is-limit-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( U) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space) is-limit-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space δ ε η θ = let (θ₁ , θ₂ , θ₁+θ₂=θ) = split-ℚ⁺ θ lemma-η+θ+δ : ((η +ℚ⁺ θ₁) +ℚ⁺ (δ +ℚ⁺ θ₂)) = η +ℚ⁺ θ +ℚ⁺ δ lemma-η+θ+δ = ( interchange-law-add-add-ℚ⁺ η θ₁ δ θ₂) ∙ ( ap ( add-ℚ⁺ (η +ℚ⁺ δ)) ( θ₁+θ₂=θ)) ∙ ( associative-add-ℚ⁺ η δ θ) ∙ ( ap ( add-ℚ⁺ η) ( commutative-add-ℚ⁺ δ θ)) ∙ ( inv (associative-add-ℚ⁺ η θ δ)) lemma-lim : neighborhood-Pseudometric-Space M ( η +ℚ⁺ θ +ℚ⁺ δ) ( map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( δ) ( η)) ( map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( θ₂) ( θ₁)) lemma-lim = tr ( is-upper-bound-dist-Pseudometric-Space M ( map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( δ) ( η)) ( map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( θ))) ( lemma-η+θ+δ) ( is-cauchy-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space _ _ _ _) in tr ( is-upper-bound-dist-Pseudometric-Space M ( map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( δ) ( η)) ( map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( θ))) ( associative-add-ℚ⁺ ( η +ℚ⁺ θ) ( δ) ( ε)) ( monotonic-neighborhood-Pseudometric-Space M ( map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( δ) ( η)) ( map-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( θ)) ( η +ℚ⁺ θ +ℚ⁺ δ) ( η +ℚ⁺ θ +ℚ⁺ δ +ℚ⁺ ε) ( le-left-add-ℚ⁺ ( η +ℚ⁺ θ +ℚ⁺ δ) ε) ( lemma-lim)) has-limit-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : Σ ( cauchy-approximation-Pseudometric-Space M) ( is-limit-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( U)) has-limit-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space = ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space , is-limit-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space)
Any Cauchy approximation in the pseudometric completion is similar to the constant Cauchy approximation of its limit
module _ { l1 l2 : Level} (M : Pseudometric-Space l1 l2) ( u : cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) where sim-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( u) ( const-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u))) sim-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space = sim-const-is-limit-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( u) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space M u) ( is-limit-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u))
The map from a Cauchy approximation in the pseudometric completion to its limit is short
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) where abstract is-short-function-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : is-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( ( const-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ∘ ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M))) is-short-function-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space d u v = preserves-neighborhoods-sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) { u} { const-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u))} { v} { const-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( v))} ( sim-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u)) ( sim-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( v)) ( d) is-short-function-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space : is-short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( cauchy-pseudocompletion-Pseudometric-Space M) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space M) is-short-function-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space d u v Nuv = reflects-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( d) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u)) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( v)) ( is-short-function-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( d) ( u) ( v) ( Nuv)) short-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space : short-function-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( cauchy-pseudocompletion-Pseudometric-Space M) short-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space = ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space M , is-short-function-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space)
The map from a Cauchy approximation in the pseudometric completion to its limit is an isometry
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) where abstract reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : ( d : ℚ⁺) → ( u v : cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( d) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u)) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( v)) → neighborhood-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( d) ( u) ( v) reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space d u v N-lim = reflects-neighborhoods-sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) { u} { const-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u))} { v} { const-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( v))} ( sim-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u)) ( sim-const-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( v)) ( d) ( preserves-neighborhoods-map-cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( d) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( u)) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( M) ( v)) ( N-lim)) is-isometry-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : is-isometry-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( cauchy-pseudocompletion-Pseudometric-Space M) ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space M) is-isometry-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space d x y = ( ( is-short-function-lim-cauchy-approximation-pseudocompletion-Pseudometric-Space ( M) ( d) ( x) ( y)) , ( reflects-neighborhoods-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space ( d) ( x) ( y))) isometry-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : isometry-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( cauchy-pseudocompletion-Pseudometric-Space M) isometry-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space = ( lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space M , is-isometry-lim-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space)
The image of a Cauchy approximation in the Cauchy pseudocompletion is convergent
module _ {l1 l2 : Level} (M : Pseudometric-Space l1 l2) (u : cauchy-approximation-Pseudometric-Space M) where is-limit-map-cauchy-approximation-cauchy-pseudocompletion-Ppseudometric-Space : is-limit-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( map-cauchy-approximation-short-function-Pseudometric-Space ( M) ( cauchy-pseudocompletion-Pseudometric-Space M) ( short-map-cauchy-pseudocompletion-Pseudometric-Space M) ( u)) ( u) is-limit-map-cauchy-approximation-cauchy-pseudocompletion-Ppseudometric-Space ε δ α β = symmetric-neighborhood-Pseudometric-Space M ( (α +ℚ⁺ β) +ℚ⁺ (ε +ℚ⁺ δ)) ( map-cauchy-approximation-Pseudometric-Space M u β) ( map-cauchy-approximation-Pseudometric-Space M u ε) ( monotonic-neighborhood-Pseudometric-Space M ( map-cauchy-approximation-Pseudometric-Space M u β) ( map-cauchy-approximation-Pseudometric-Space M u ε) ( β +ℚ⁺ ε) ( (α +ℚ⁺ β) +ℚ⁺ (ε +ℚ⁺ δ)) ( preserves-le-add-ℚ { rational-ℚ⁺ β} { rational-ℚ⁺ (α +ℚ⁺ β)} { rational-ℚ⁺ ε} { rational-ℚ⁺ (ε +ℚ⁺ δ)} ( le-right-add-ℚ⁺ α β) ( le-left-add-ℚ⁺ ε δ)) ( is-cauchy-approximation-map-cauchy-approximation-Pseudometric-Space ( M) ( u) ( β) ( ε))) sim-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space : sim-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M)) ( map-cauchy-approximation-short-function-Pseudometric-Space ( M) ( cauchy-pseudocompletion-Pseudometric-Space M) ( short-map-cauchy-pseudocompletion-Pseudometric-Space M) ( u)) ( map-cauchy-pseudocompletion-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( u)) sim-map-cauchy-approximation-cauchy-pseudocompletion-Pseudometric-Space = sim-const-is-limit-cauchy-approximation-Pseudometric-Space ( cauchy-pseudocompletion-Pseudometric-Space M) ( map-cauchy-approximation-short-function-Pseudometric-Space ( M) ( cauchy-pseudocompletion-Pseudometric-Space M) ( short-map-cauchy-pseudocompletion-Pseudometric-Space M) ( u)) ( u) ( is-limit-map-cauchy-approximation-cauchy-pseudocompletion-Ppseudometric-Space)
Recent changes
- 2025-12-25. malarbol. Refactor function actions on cauchy approximations (#1738).