Inequality on the standard finite types
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Amélia Liao, Julian KG, Victor Blanchi, fernabnor and louismntnu.
Created on 2022-01-26.
Last modified on 2023-11-24.
module elementary-number-theory.inequality-standard-finite-types where
Imports
open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.action-on-identifications-functions open import foundation.binary-relations open import foundation.coproduct-types open import foundation.decidable-propositions open import foundation.decidable-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.identity-types open import foundation.propositions open import foundation.unit-type open import foundation.universe-levels open import order-theory.posets open import order-theory.preorders open import univalent-combinatorics.standard-finite-types
Definitions
leq-Fin : (k : ℕ) → Fin k → Fin k → UU lzero leq-Fin (succ-ℕ k) x (inr y) = unit leq-Fin (succ-ℕ k) (inl x) (inl y) = leq-Fin k x y leq-Fin (succ-ℕ k) (inr x) (inl y) = empty abstract is-prop-leq-Fin : (k : ℕ) (x y : Fin k) → is-prop (leq-Fin k x y) is-prop-leq-Fin (succ-ℕ k) (inl x) (inl y) = is-prop-leq-Fin k x y is-prop-leq-Fin (succ-ℕ k) (inl x) (inr star) = is-prop-unit is-prop-leq-Fin (succ-ℕ k) (inr star) (inl y) = is-prop-empty is-prop-leq-Fin (succ-ℕ k) (inr star) (inr star) = is-prop-unit leq-Fin-Prop : (k : ℕ) → Fin k → Fin k → Prop lzero pr1 (leq-Fin-Prop k x y) = leq-Fin k x y pr2 (leq-Fin-Prop k x y) = is-prop-leq-Fin k x y leq-neg-one-Fin : (k : ℕ) (x : Fin (succ-ℕ k)) → leq-Fin (succ-ℕ k) x (neg-one-Fin k) leq-neg-one-Fin k x = star refl-leq-Fin : (k : ℕ) → is-reflexive (leq-Fin k) refl-leq-Fin (succ-ℕ k) (inl x) = refl-leq-Fin k x refl-leq-Fin (succ-ℕ k) (inr star) = star antisymmetric-leq-Fin : (k : ℕ) (x y : Fin k) → leq-Fin k x y → leq-Fin k y x → x = y antisymmetric-leq-Fin (succ-ℕ k) (inl x) (inl y) H K = ap inl (antisymmetric-leq-Fin k x y H K) antisymmetric-leq-Fin (succ-ℕ k) (inr star) (inr star) H K = refl transitive-leq-Fin : (k : ℕ) → is-transitive (leq-Fin k) transitive-leq-Fin (succ-ℕ k) (inl x) (inl y) (inl z) H K = transitive-leq-Fin k x y z H K transitive-leq-Fin (succ-ℕ k) (inl x) (inl y) (inr star) H K = star transitive-leq-Fin (succ-ℕ k) (inl x) (inr star) (inr star) H K = star transitive-leq-Fin (succ-ℕ k) (inr star) (inr star) (inr star) H K = star concatenate-eq-leq-eq-Fin : (k : ℕ) {x1 x2 x3 x4 : Fin k} → x1 = x2 → leq-Fin k x2 x3 → x3 = x4 → leq-Fin k x1 x4 concatenate-eq-leq-eq-Fin k refl H refl = H leq-succ-Fin : (k : ℕ) (x : Fin k) → leq-Fin (succ-ℕ k) (inl-Fin k x) (succ-Fin (succ-ℕ k) (inl-Fin k x)) leq-succ-Fin (succ-ℕ k) (inl x) = leq-succ-Fin k x leq-succ-Fin (succ-ℕ k) (inr star) = star preserves-leq-nat-Fin : (k : ℕ) {x y : Fin k} → leq-Fin k x y → leq-ℕ (nat-Fin k x) (nat-Fin k y) preserves-leq-nat-Fin (succ-ℕ k) {inl x} {inl y} H = preserves-leq-nat-Fin k H preserves-leq-nat-Fin (succ-ℕ k) {inl x} {inr star} H = leq-le-ℕ (nat-Fin k x) k (strict-upper-bound-nat-Fin k x) preserves-leq-nat-Fin (succ-ℕ k) {inr star} {inr star} H = refl-leq-ℕ k reflects-leq-nat-Fin : (k : ℕ) {x y : Fin k} → leq-ℕ (nat-Fin k x) (nat-Fin k y) → leq-Fin k x y reflects-leq-nat-Fin (succ-ℕ k) {inl x} {inl y} H = reflects-leq-nat-Fin k H reflects-leq-nat-Fin (succ-ℕ k) {inr star} {inl y} H = ex-falso ( contradiction-le-ℕ (nat-Fin k y) k (strict-upper-bound-nat-Fin k y) H) reflects-leq-nat-Fin (succ-ℕ k) {inl x} {inr star} H = star reflects-leq-nat-Fin (succ-ℕ k) {inr star} {inr star} H = star
The partial order on the standard finite types
Fin-Preorder : ℕ → Preorder lzero lzero pr1 (Fin-Preorder k) = Fin k pr1 (pr2 (Fin-Preorder k)) = leq-Fin-Prop k pr1 (pr2 (pr2 (Fin-Preorder k))) = refl-leq-Fin k pr2 (pr2 (pr2 (Fin-Preorder k))) = transitive-leq-Fin k Fin-Poset : ℕ → Poset lzero lzero pr1 (Fin-Poset k) = Fin-Preorder k pr2 (Fin-Poset k) = antisymmetric-leq-Fin k
Properties
Ordering on the standard finite types is decidable
is-decidable-leq-Fin : (k : ℕ) (x y : Fin k) → is-decidable (leq-Fin k x y) is-decidable-leq-Fin (succ-ℕ k) (inl x) (inl y) = is-decidable-leq-Fin k x y is-decidable-leq-Fin (succ-ℕ k) (inl x) (inr y) = inl star is-decidable-leq-Fin (succ-ℕ k) (inr x) (inl y) = inr (λ x → x) is-decidable-leq-Fin (succ-ℕ k) (inr x) (inr y) = inl star leq-Fin-Decidable-Prop : (k : ℕ) → Fin k → Fin k → Decidable-Prop lzero pr1 (leq-Fin-Decidable-Prop k x y) = leq-Fin k x y pr1 (pr2 (leq-Fin-Decidable-Prop k x y)) = is-prop-leq-Fin k x y pr2 (pr2 (leq-Fin-Decidable-Prop k x y)) = is-decidable-leq-Fin k x y
Ordering on the standard finite types is linear
linear-leq-Fin : (k : ℕ) (x y : Fin k) → leq-Fin k x y + leq-Fin k y x linear-leq-Fin (succ-ℕ k) (inl x) (inl y) = linear-leq-Fin k x y linear-leq-Fin (succ-ℕ k) (inl x) (inr y) = inl star linear-leq-Fin (succ-ℕ k) (inr x) y = inr star
Recent changes
- 2023-11-24. Egbert Rijke. Refactor precomposition (#937).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. The decidable total order on a standard finite type (#844).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-22. Fredrik Bakke, Victor Blanchi, Egbert Rijke and Jonathan Prieto-Cubides. Pre-commit stuff (#627).