Bicomposition of functions
Content created by Fredrik Bakke.
Created on 2024-10-27.
Last modified on 2024-10-27.
module foundation.bicomposition-functions where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.postcomposition-dependent-functions open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-maps open import foundation-core.commuting-triangles-of-maps open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.type-theoretic-principle-of-choice
Idea
Given functions f : A → B
and g : X → Y
the
bicomposition function¶ is the
map
g ∘ - ∘ f : (B → X) → (A → Y)
defined by λ h x → g (h (f x))
.
Definitions
The bicomposition operation on ordinary functions
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (f : A → B) {X : UU l3} {Y : UU l4} (g : X → Y) where bicomp : (B → X) → (A → Y) bicomp h = g ∘ h ∘ f
Bicomposition preserves homotopies
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {f f' : A → B} (F : f ~ f') {X : UU l3} {Y : UU l4} {g g' : X → Y} (G : g ~ g') where htpy-bicomp : bicomp f g ~ bicomp f' g' htpy-bicomp h = eq-htpy (G ·r (h ∘ f) ∙h (g' ∘ h) ·l F)
See also
Recent changes
- 2024-10-27. Fredrik Bakke. Functoriality of morphisms of arrows (#1130).