Powers of elements in groups
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-08-21.
Last modified on 2023-09-26.
module group-theory.powers-of-elements-groups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.commuting-elements-groups open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.powers-of-elements-monoids
Idea
The power operation on a group is the map n x ↦ xⁿ
, which is defined by
iteratively multiplying x
with itself n
times. We define this operation
where n
ranges over the natural numbers, as well as where n
ranges over the
integers.
Definition
Powers by natural numbers of group elements
module _ {l : Level} (G : Group l) where power-Group : ℕ → type-Group G → type-Group G power-Group = power-Monoid (monoid-Group G)
The predicate of being a power of an element in a group
We say that an element y
is a power of an element x
if there
exists a number n
such that
xⁿ = y
.
module _ {l : Level} (G : Group l) where is-power-of-element-prop-Group : (x y : type-Group G) → Prop l is-power-of-element-prop-Group = is-power-of-element-prop-Monoid (monoid-Group G) is-power-of-element-Group : (x y : type-Group G) → UU l is-power-of-element-Group = is-power-of-element-Monoid (monoid-Group G) is-prop-is-power-of-element-Group : (x y : type-Group G) → is-prop (is-power-of-element-Group x y) is-prop-is-power-of-element-Group = is-prop-is-power-of-element-Monoid (monoid-Group G)
Properties
1ⁿ = 1
module _ {l : Level} (G : Group l) where power-unit-Group : (n : ℕ) → power-Group G n (unit-Group G) = unit-Group G power-unit-Group = power-unit-Monoid (monoid-Group G)
xⁿ⁺¹ = xⁿx
module _ {l : Level} (G : Group l) where power-succ-Group : (n : ℕ) (x : type-Group G) → power-Group G (succ-ℕ n) x = mul-Group G (power-Group G n x) x power-succ-Group = power-succ-Monoid (monoid-Group G)
xⁿ⁺¹ = xxⁿ
module _ {l : Level} (G : Group l) where power-succ-Group' : (n : ℕ) (x : type-Group G) → power-Group G (succ-ℕ n) x = mul-Group G x (power-Group G n x) power-succ-Group' = power-succ-Monoid' (monoid-Group G)
Powers by sums of natural numbers are products of powers
module _ {l : Level} (G : Group l) where distributive-power-add-Group : (m n : ℕ) {x : type-Group G} → power-Group G (m +ℕ n) x = mul-Group G (power-Group G m x) (power-Group G n x) distributive-power-add-Group = distributive-power-add-Monoid (monoid-Group G)
If x
commutes with y
then so do their powers
module _ {l : Level} (G : Group l) where commute-powers-Group' : (n : ℕ) {x y : type-Group G} → commute-Group G x y → commute-Group G (power-Group G n x) y commute-powers-Group' = commute-powers-Monoid' (monoid-Group G) commute-powers-Group : (m n : ℕ) {x y : type-Group G} → commute-Group G x y → commute-Group G (power-Group G m x) (power-Group G n y) commute-powers-Group = commute-powers-Monoid (monoid-Group G)
If x
commutes with y
, then powers distribute over the product of x
and y
module _ {l : Level} (G : Group l) where distributive-power-mul-Group : (n : ℕ) {x y : type-Group G} → (H : mul-Group G x y = mul-Group G y x) → power-Group G n (mul-Group G x y) = mul-Group G (power-Group G n x) (power-Group G n y) distributive-power-mul-Group = distributive-power-mul-Monoid (monoid-Group G)
Powers by products of natural numbers are iterated powers
module _ {l : Level} (G : Group l) where power-mul-Group : (m n : ℕ) {x : type-Group G} → power-Group G (m *ℕ n) x = power-Group G n (power-Group G m x) power-mul-Group = power-mul-Monoid (monoid-Group G)
Group homomorphisms preserve powers
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where preserves-powers-hom-Group : (n : ℕ) (x : type-Group G) → map-hom-Group G H f (power-Group G n x) = power-Group H n (map-hom-Group G H f x) preserves-powers-hom-Group = preserves-powers-hom-Monoid ( monoid-Group G) ( monoid-Group H) ( hom-monoid-hom-Group G H f)
Recent changes
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).