Powers of elements in groups
Content created by Egbert Rijke, Fredrik Bakke, Louis Wasserman and Gregor Perčič.
Created on 2023-08-21.
Last modified on 2025-10-17.
module group-theory.powers-of-elements-groups where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.commuting-elements-groups open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.powers-of-elements-monoids
Idea
The
power operation¶
on a group is the map n x ↦ xⁿ, which is defined by
iteratively multiplying x with itself n
times. This file describes the case where n is a
natural number.
Definition
Powers by natural numbers of group elements
module _ {l : Level} (G : Group l) where power-Group : ℕ → type-Group G → type-Group G power-Group = power-Monoid (monoid-Group G)
The predicate of being a power of an element in a group
We say that an element y is a power of an element x if there
exists a number n such that
xⁿ = y.
module _ {l : Level} (G : Group l) where is-power-of-element-prop-Group : (x y : type-Group G) → Prop l is-power-of-element-prop-Group = is-power-of-element-prop-Monoid (monoid-Group G) is-power-of-element-Group : (x y : type-Group G) → UU l is-power-of-element-Group = is-power-of-element-Monoid (monoid-Group G) is-prop-is-power-of-element-Group : (x y : type-Group G) → is-prop (is-power-of-element-Group x y) is-prop-is-power-of-element-Group = is-prop-is-power-of-element-Monoid (monoid-Group G)
Properties
1ⁿ = 1
module _ {l : Level} (G : Group l) where power-unit-Group : (n : ℕ) → power-Group G n (unit-Group G) = unit-Group G power-unit-Group = power-unit-Monoid (monoid-Group G)
xⁿ⁺¹ = xⁿx
module _ {l : Level} (G : Group l) where power-succ-Group : (n : ℕ) (x : type-Group G) → power-Group G (succ-ℕ n) x = mul-Group G (power-Group G n x) x power-succ-Group = power-succ-Monoid (monoid-Group G)
xⁿ⁺¹ = xxⁿ
module _ {l : Level} (G : Group l) where power-succ-Group' : (n : ℕ) (x : type-Group G) → power-Group G (succ-ℕ n) x = mul-Group G x (power-Group G n x) power-succ-Group' = power-succ-Monoid' (monoid-Group G)
Powers by sums of natural numbers are products of powers
module _ {l : Level} (G : Group l) where distributive-power-add-Group : (m n : ℕ) {x : type-Group G} → power-Group G (m +ℕ n) x = mul-Group G (power-Group G m x) (power-Group G n x) distributive-power-add-Group = distributive-power-add-Monoid (monoid-Group G)
If x commutes with y then so do their powers
module _ {l : Level} (G : Group l) where commute-powers-Group' : (n : ℕ) {x y : type-Group G} → commute-Group G x y → commute-Group G (power-Group G n x) y commute-powers-Group' = commute-powers-Monoid' (monoid-Group G) commute-powers-Group : (m n : ℕ) {x y : type-Group G} → commute-Group G x y → commute-Group G (power-Group G m x) (power-Group G n y) commute-powers-Group = commute-powers-Monoid (monoid-Group G)
If x commutes with y, then powers distribute over the product of x and y
module _ {l : Level} (G : Group l) where distributive-power-mul-Group : (n : ℕ) {x y : type-Group G} → (H : mul-Group G x y = mul-Group G y x) → power-Group G n (mul-Group G x y) = mul-Group G (power-Group G n x) (power-Group G n y) distributive-power-mul-Group = distributive-power-mul-Monoid (monoid-Group G)
Powers by products of natural numbers are iterated powers
module _ {l : Level} (G : Group l) where power-mul-Group : (m n : ℕ) {x : type-Group G} → power-Group G (m *ℕ n) x = power-Group G n (power-Group G m x) power-mul-Group = power-mul-Monoid (monoid-Group G)
The inverse of x, raised to the power n, is the inverse of x raised to the power n
module _ {l : Level} (G : Group l) where abstract power-inv-Group : (n : ℕ) (x : type-Group G) → power-Group G n (inv-Group G x) = inv-Group G (power-Group G n x) power-inv-Group 0 _ = inv (inv-unit-Group G) power-inv-Group 1 _ = refl power-inv-Group (succ-ℕ n@(succ-ℕ _)) x = equational-reasoning mul-Group G (power-Group G n (inv-Group G x)) (inv-Group G x) = mul-Group G (inv-Group G (power-Group G n x)) (inv-Group G x) by ap-mul-Group G (power-inv-Group n x) refl = inv-Group G (mul-Group G x (power-Group G n x)) by inv (distributive-inv-mul-Group G) = inv-Group G (power-Group G (succ-ℕ n) x) by ap (inv-Group G) (inv (power-succ-Group' G n x))
Group homomorphisms preserve powers
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where preserves-powers-hom-Group : (n : ℕ) (x : type-Group G) → map-hom-Group G H f (power-Group G n x) = power-Group H n (map-hom-Group G H f x) preserves-powers-hom-Group = preserves-powers-hom-Monoid ( monoid-Group G) ( monoid-Group H) ( hom-monoid-hom-Group G H f)
See also
Recent changes
- 2025-10-17. Louis Wasserman. Powers of positive rational numbers (#1600).
- 2025-10-12. Louis Wasserman. Large monoids (#1587).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).