Maps between noncoherent large ω-precategories
Content created by Fredrik Bakke.
Created on 2025-02-04.
Last modified on 2025-02-04.
{-# OPTIONS --guardedness #-} module wild-category-theory.maps-noncoherent-large-omega-precategories where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import globular-types.globular-maps open import globular-types.globular-types open import globular-types.large-globular-maps open import globular-types.large-globular-types open import wild-category-theory.maps-noncoherent-omega-precategories open import wild-category-theory.noncoherent-large-omega-precategories open import wild-category-theory.noncoherent-omega-precategories
Idea
A
map¶
f
between
noncoherent large ω-precategories
𝒜
and ℬ
is a large globular map
between their underlying
large globular types. More
specifically, maps between noncoherent large ω-precategories consist of a map on
objects F₀ : obj 𝒜 → obj ℬ
, and for every pair of -morphisms f
and g
, a
map of -morphisms
Fₙ₊₁ : (𝑛+1)-hom 𝒞 f g → (𝑛+1)-hom 𝒟 (Fₙ f) (Fₙ g).
A map between noncoherent large ω-precategories does not have to preserve the identities or composition in any shape or form, and is the least structured notion of a “morphism” between noncoherent ω-precategories. For a notion of “morphism” between noncoherent large ω-precategories that in one sense preserves this additional structure, see colax functors between noncoherent large ω-precategories.
Definitions
Maps between noncoherent large ω-precategories
map-Noncoherent-Large-ω-Precategory : {α1 α2 : Level → Level} {β1 β2 : Level → Level → Level} (δ : Level → Level) (𝒜 : Noncoherent-Large-ω-Precategory α1 β1) (ℬ : Noncoherent-Large-ω-Precategory α2 β2) → UUω map-Noncoherent-Large-ω-Precategory δ 𝒜 ℬ = large-globular-map δ ( large-globular-type-Noncoherent-Large-ω-Precategory 𝒜) ( large-globular-type-Noncoherent-Large-ω-Precategory ℬ) module _ {α1 α2 : Level → Level} {β1 β2 : Level → Level → Level} {δ : Level → Level} (𝒜 : Noncoherent-Large-ω-Precategory α1 β1) (ℬ : Noncoherent-Large-ω-Precategory α2 β2) (F : map-Noncoherent-Large-ω-Precategory δ 𝒜 ℬ) where obj-map-Noncoherent-Large-ω-Precategory : {l : Level} → obj-Noncoherent-Large-ω-Precategory 𝒜 l → obj-Noncoherent-Large-ω-Precategory ℬ (δ l) obj-map-Noncoherent-Large-ω-Precategory = 0-cell-large-globular-map F hom-globular-map-map-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory 𝒜 l1} {y : obj-Noncoherent-Large-ω-Precategory 𝒜 l2} → globular-map ( hom-globular-type-Noncoherent-Large-ω-Precategory 𝒜 x y) ( hom-globular-type-Noncoherent-Large-ω-Precategory ℬ ( obj-map-Noncoherent-Large-ω-Precategory x) ( obj-map-Noncoherent-Large-ω-Precategory y)) hom-globular-map-map-Noncoherent-Large-ω-Precategory = 1-cell-globular-map-large-globular-map F hom-map-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory 𝒜 l1} {y : obj-Noncoherent-Large-ω-Precategory 𝒜 l2} → hom-Noncoherent-Large-ω-Precategory 𝒜 x y → hom-Noncoherent-Large-ω-Precategory ℬ ( obj-map-Noncoherent-Large-ω-Precategory x) ( obj-map-Noncoherent-Large-ω-Precategory y) hom-map-Noncoherent-Large-ω-Precategory = 1-cell-large-globular-map F 2-hom-map-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory 𝒜 l1} {y : obj-Noncoherent-Large-ω-Precategory 𝒜 l2} {f g : hom-Noncoherent-Large-ω-Precategory 𝒜 x y} → 2-hom-Noncoherent-Large-ω-Precategory 𝒜 f g → 2-hom-Noncoherent-Large-ω-Precategory ℬ ( hom-map-Noncoherent-Large-ω-Precategory f) ( hom-map-Noncoherent-Large-ω-Precategory g) 2-hom-map-Noncoherent-Large-ω-Precategory = 2-cell-large-globular-map F hom-noncoherent-ω-precategory-map-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} (x : obj-Noncoherent-Large-ω-Precategory 𝒜 l1) (y : obj-Noncoherent-Large-ω-Precategory 𝒜 l2) → map-Noncoherent-ω-Precategory ( hom-noncoherent-ω-precategory-Noncoherent-Large-ω-Precategory ( 𝒜) ( x) ( y)) ( hom-noncoherent-ω-precategory-Noncoherent-Large-ω-Precategory ( ℬ) ( obj-map-Noncoherent-Large-ω-Precategory x) ( obj-map-Noncoherent-Large-ω-Precategory y)) hom-noncoherent-ω-precategory-map-Noncoherent-Large-ω-Precategory _ _ = 1-cell-globular-map-large-globular-map F
The identity map on a noncoherent large ω-precategory
module _ {α : Level → Level} {β : Level → Level → Level} (𝒜 : Noncoherent-Large-ω-Precategory α β) where id-map-Noncoherent-Large-ω-Precategory : map-Noncoherent-Large-ω-Precategory (λ l → l) 𝒜 𝒜 id-map-Noncoherent-Large-ω-Precategory = id-large-globular-map _
Composition of maps of noncoherent large ω-precategories
module _ {α1 α2 α3 : Level → Level} {β1 β2 β3 : Level → Level → Level} {δ1 δ2 : Level → Level} (𝒜 : Noncoherent-Large-ω-Precategory α1 β1) (ℬ : Noncoherent-Large-ω-Precategory α2 β2) (𝒞 : Noncoherent-Large-ω-Precategory α3 β3) (G : map-Noncoherent-Large-ω-Precategory δ2 ℬ 𝒞) (F : map-Noncoherent-Large-ω-Precategory δ1 𝒜 ℬ) where comp-map-Noncoherent-Large-ω-Precategory : map-Noncoherent-Large-ω-Precategory (λ l → δ2 (δ1 l)) 𝒜 𝒞 comp-map-Noncoherent-Large-ω-Precategory = comp-large-globular-map G F
Recent changes
- 2025-02-04. Fredrik Bakke. Rename wild higher categories (#1233).