Normed real vector spaces
Content created by Louis Wasserman.
Created on 2025-11-26.
Last modified on 2025-11-26.
module linear-algebra.normed-real-vector-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.sets open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.abelian-groups open import linear-algebra.real-vector-spaces open import linear-algebra.seminormed-real-vector-spaces open import metric-spaces.equality-of-metric-spaces open import metric-spaces.located-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.metrics open import real-numbers.absolute-value-real-numbers open import real-numbers.dedekind-real-numbers open import real-numbers.distance-real-numbers open import real-numbers.metric-space-of-real-numbers open import real-numbers.nonnegative-real-numbers open import real-numbers.raising-universe-levels-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.saturation-inequality-nonnegative-real-numbers open import real-numbers.similarity-real-numbers
Idea
A
norm¶
on a real vector space V is a
seminorm p on V that is
extensional: if p(v) = 0, then v is the zero vector.
A real vector space equipped with such a norm is called a normed vector space¶.
A norm on a real vector space induces a
located
metric space on the vector space, defined by
the neighborhood relation that v and w are in an ε-neighborhood of each
other if p(v - w) ≤ ε.
Definition
module _ {l1 l2 : Level} (V : ℝ-Vector-Space l1 l2) (p : seminorm-ℝ-Vector-Space V) where is-norm-prop-seminorm-ℝ-Vector-Space : Prop (lsuc l1 ⊔ l2) is-norm-prop-seminorm-ℝ-Vector-Space = Π-Prop ( type-ℝ-Vector-Space V) ( λ v → hom-Prop ( Id-Prop (ℝ-Set l1) (pr1 p v) (raise-ℝ l1 zero-ℝ)) ( is-zero-prop-ℝ-Vector-Space V v)) is-norm-seminorm-ℝ-Vector-Space : UU (lsuc l1 ⊔ l2) is-norm-seminorm-ℝ-Vector-Space = type-Prop is-norm-prop-seminorm-ℝ-Vector-Space norm-ℝ-Vector-Space : {l1 l2 : Level} → ℝ-Vector-Space l1 l2 → UU (lsuc l1 ⊔ l2) norm-ℝ-Vector-Space V = type-subtype (is-norm-prop-seminorm-ℝ-Vector-Space V) Normed-ℝ-Vector-Space : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Normed-ℝ-Vector-Space l1 l2 = Σ (ℝ-Vector-Space l1 l2) norm-ℝ-Vector-Space
Properties
module _ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) where vector-space-Normed-ℝ-Vector-Space : ℝ-Vector-Space l1 l2 vector-space-Normed-ℝ-Vector-Space = pr1 V norm-Normed-ℝ-Vector-Space : norm-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space norm-Normed-ℝ-Vector-Space = pr2 V seminorm-Normed-ℝ-Vector-Space : seminorm-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space seminorm-Normed-ℝ-Vector-Space = pr1 norm-Normed-ℝ-Vector-Space seminormed-vector-space-Normed-ℝ-Vector-Space : Seminormed-ℝ-Vector-Space l1 l2 seminormed-vector-space-Normed-ℝ-Vector-Space = ( vector-space-Normed-ℝ-Vector-Space , seminorm-Normed-ℝ-Vector-Space) set-Normed-ℝ-Vector-Space : Set l2 set-Normed-ℝ-Vector-Space = set-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space type-Normed-ℝ-Vector-Space : UU l2 type-Normed-ℝ-Vector-Space = type-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space add-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space add-Normed-ℝ-Vector-Space = add-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space diff-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space diff-Normed-ℝ-Vector-Space = diff-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space zero-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space zero-Normed-ℝ-Vector-Space = zero-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space map-norm-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → ℝ l1 map-norm-Normed-ℝ-Vector-Space = pr1 (pr1 norm-Normed-ℝ-Vector-Space) nonnegative-norm-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → ℝ⁰⁺ l1 nonnegative-norm-Normed-ℝ-Vector-Space = nonnegative-seminorm-Seminormed-ℝ-Vector-Space ( seminormed-vector-space-Normed-ℝ-Vector-Space) dist-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space → ℝ l1 dist-Normed-ℝ-Vector-Space = dist-Seminormed-ℝ-Vector-Space seminormed-vector-space-Normed-ℝ-Vector-Space nonnegative-dist-Normed-ℝ-Vector-Space : type-Normed-ℝ-Vector-Space → type-Normed-ℝ-Vector-Space → ℝ⁰⁺ l1 nonnegative-dist-Normed-ℝ-Vector-Space = nonnegative-dist-Seminormed-ℝ-Vector-Space ( seminormed-vector-space-Normed-ℝ-Vector-Space) is-extensional-norm-Normed-ℝ-Metric-Space : (v : type-Normed-ℝ-Vector-Space) → map-norm-Normed-ℝ-Vector-Space v = raise-ℝ l1 zero-ℝ → v = zero-Normed-ℝ-Vector-Space is-extensional-norm-Normed-ℝ-Metric-Space = pr2 norm-Normed-ℝ-Vector-Space is-extensional-dist-Normed-ℝ-Metric-Space : (v w : type-Normed-ℝ-Vector-Space) → dist-Normed-ℝ-Vector-Space v w = raise-ℝ l1 zero-ℝ → v = w is-extensional-dist-Normed-ℝ-Metric-Space v w |v-w|=0 = eq-is-zero-right-subtraction-Ab ( ab-ℝ-Vector-Space vector-space-Normed-ℝ-Vector-Space) ( is-extensional-norm-Normed-ℝ-Metric-Space ( diff-Normed-ℝ-Vector-Space v w) ( |v-w|=0)) commutative-dist-Normed-ℝ-Vector-Space : (v w : type-Normed-ℝ-Vector-Space) → dist-Normed-ℝ-Vector-Space v w = dist-Normed-ℝ-Vector-Space w v commutative-dist-Normed-ℝ-Vector-Space = commutative-dist-Seminormed-ℝ-Vector-Space ( seminormed-vector-space-Normed-ℝ-Vector-Space)
The metric space of a normed vector space
module _ {l1 l2 : Level} (V : Normed-ℝ-Vector-Space l1 l2) where refl-norm-Normed-ℝ-Vector-Space : (v : type-Normed-ℝ-Vector-Space V) → sim-ℝ zero-ℝ (dist-Normed-ℝ-Vector-Space V v v) refl-norm-Normed-ℝ-Vector-Space v = inv-tr ( sim-ℝ zero-ℝ) ( is-zero-diagonal-dist-Seminormed-ℝ-Vector-Space ( seminormed-vector-space-Normed-ℝ-Vector-Space V) ( v)) ( sim-raise-ℝ l1 zero-ℝ) metric-Normed-ℝ-Vector-Space : Metric l1 (set-Normed-ℝ-Vector-Space V) metric-Normed-ℝ-Vector-Space = ( nonnegative-dist-Normed-ℝ-Vector-Space V , refl-norm-Normed-ℝ-Vector-Space , ( λ v w → eq-ℝ⁰⁺ _ _ (commutative-dist-Normed-ℝ-Vector-Space V v w)) , triangular-dist-Seminormed-ℝ-Vector-Space ( seminormed-vector-space-Normed-ℝ-Vector-Space V) , ( λ v w 0~dvw → is-extensional-dist-Normed-ℝ-Metric-Space V v w ( eq-sim-ℝ ( transitive-sim-ℝ _ _ _ ( sim-raise-ℝ l1 zero-ℝ) ( symmetric-sim-ℝ 0~dvw))))) metric-space-Normed-ℝ-Vector-Space : Metric-Space l2 l1 metric-space-Normed-ℝ-Vector-Space = metric-space-Metric ( set-Normed-ℝ-Vector-Space V) ( metric-Normed-ℝ-Vector-Space) located-metric-space-Normed-ℝ-Vector-Space : Located-Metric-Space l2 l1 located-metric-space-Normed-ℝ-Vector-Space = located-metric-space-Metric ( set-Normed-ℝ-Vector-Space V) ( metric-Normed-ℝ-Vector-Space)
Properties
The real numbers are a normed vector space over themselves with norm x ↦ |x|
normed-real-vector-space-ℝ : (l : Level) → Normed-ℝ-Vector-Space l (lsuc l) normed-real-vector-space-ℝ l = ( real-vector-space-ℝ l , ( abs-ℝ , triangle-inequality-abs-ℝ , abs-mul-ℝ) , eq-raise-zero-eq-raise-zero-abs-ℝ) abstract eq-metric-space-normed-real-vector-space-metric-space-ℝ : (l : Level) → metric-space-Normed-ℝ-Vector-Space (normed-real-vector-space-ℝ l) = metric-space-ℝ l eq-metric-space-normed-real-vector-space-metric-space-ℝ l = eq-isometric-eq-Metric-Space _ _ ( refl , λ d x y → inv-iff (neighborhood-iff-leq-dist-ℝ d x y))
See also
- Real Banach spaces, normed real vector spaces for which the induced metric space is complete
External links
- Norm at Wikidata
- Normed vector space at Wikidata
- Normed vector space on Wikipedia
Recent changes
- 2025-11-26. Louis Wasserman. Normed real vector spaces (#1704).