The action on identifications of the flat modality

Content created by Fredrik Bakke.

Created on 2024-09-06.
Last modified on 2024-09-23.

{-# OPTIONS --cohesion --flat-split #-}

module modal-type-theory.action-on-identifications-flat-modality where
Imports
open import foundation.action-on-identifications-functions
open import foundation.identity-types
open import foundation.universe-levels

open import modal-type-theory.action-on-identifications-crisp-functions
open import modal-type-theory.crisp-identity-types
open import modal-type-theory.flat-modality

Idea

Given a crisp identification x = y in A, then there is an identification intro-flat x = intro-flat y in ♭ A.

Definitions

The action on identifications of the flat modality

module _
  {@l1 : Level} {@A : UU l1} {@x y : A}
  where

  ap-flat : @x  y  intro-flat x  intro-flat y
  ap-flat = crisp-ap intro-flat

Properties

Computing the flat modality’s action on reflexivity

module _
  {@l : Level} {@A : UU l} {@x : A}
  where

  compute-refl-ap-flat : ap-flat (refl {x = x})  refl
  compute-refl-ap-flat = refl

The action on identifications of the flat modality is a crisp section of the action on identifications of its counit

module _
  {@l : Level} {@A : UU l}
  where

  is-crisp-section-ap-flat :
    {@x y : A} (@p : x  y)  ap (counit-flat) (ap-flat p)  p
  is-crisp-section-ap-flat =
    crisp-based-ind-Id
      ( λ y p  ap (counit-flat) (ap-flat p)  p)
      ( refl)

The action on identifications of the flat modality from [Shu18]

Note. While we record the constructions from Corollary 6.3 [Shu18] here, the construction of ap-flat is preferred elsewhere.

module _
  {@l : Level} {@A : UU l}
  where

  ap-flat' :
    {@x y : A}  @(x  y)  intro-flat x  intro-flat y
  ap-flat' {x} {y} p =
    eq-Eq-flat (intro-flat x) (intro-flat y) (intro-flat p)

  compute-refl-ap-flat' :
    {@x : A}  ap-flat' (refl {x = x})  refl
  compute-refl-ap-flat' = refl

  is-crisp-section-ap-flat' :
    {@x y : A} (@p : x  y)  ap (counit-flat) (ap-flat' p)  p
  is-crisp-section-ap-flat' =
    crisp-based-ind-Id
      ( λ y p  ap (counit-flat) (ap-flat' p)  p)
      ( refl)

  compute-ap-flat' :
    {@x y : A} (@p : x  y)  ap-flat p  ap-flat' p
  compute-ap-flat' =
    crisp-based-ind-Id  y p  ap-flat p  ap-flat' p) refl

References

[Shu18]
Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.

Recent changes