The action on identifications of the flat modality
Content created by Fredrik Bakke.
Created on 2024-09-06.
Last modified on 2024-09-23.
{-# OPTIONS --cohesion --flat-split #-} module modal-type-theory.action-on-identifications-flat-modality where
Imports
open import foundation.action-on-identifications-functions open import foundation.identity-types open import foundation.universe-levels open import modal-type-theory.action-on-identifications-crisp-functions open import modal-type-theory.crisp-identity-types open import modal-type-theory.flat-modality
Idea
Given a crisp
identification x = y
in A
, then there
is an identification intro-flat x = intro-flat y
in ♭ A
.
Definitions
The action on identifications of the flat modality
module _ {@♭ l1 : Level} {@♭ A : UU l1} {@♭ x y : A} where ap-flat : @♭ x = y → intro-flat x = intro-flat y ap-flat = crisp-ap intro-flat
Properties
Computing the flat modality’s action on reflexivity
module _ {@♭ l : Level} {@♭ A : UU l} {@♭ x : A} where compute-refl-ap-flat : ap-flat (refl {x = x}) = refl compute-refl-ap-flat = refl
The action on identifications of the flat modality is a crisp section of the action on identifications of its counit
module _ {@♭ l : Level} {@♭ A : UU l} where is-crisp-section-ap-flat : {@♭ x y : A} (@♭ p : x = y) → ap (counit-flat) (ap-flat p) = p is-crisp-section-ap-flat = crisp-based-ind-Id ( λ y p → ap (counit-flat) (ap-flat p) = p) ( refl)
The action on identifications of the flat modality from [Shu18]
Note. While we record the constructions from Corollary 6.3 [Shu18]
here, the construction of ap-flat
is preferred elsewhere.
module _ {@♭ l : Level} {@♭ A : UU l} where ap-flat' : {@♭ x y : A} → @♭ (x = y) → intro-flat x = intro-flat y ap-flat' {x} {y} p = eq-Eq-flat (intro-flat x) (intro-flat y) (intro-flat p) compute-refl-ap-flat' : {@♭ x : A} → ap-flat' (refl {x = x}) = refl compute-refl-ap-flat' = refl is-crisp-section-ap-flat' : {@♭ x y : A} (@♭ p : x = y) → ap (counit-flat) (ap-flat' p) = p is-crisp-section-ap-flat' = crisp-based-ind-Id ( λ y p → ap (counit-flat) (ap-flat' p) = p) ( refl) compute-ap-flat' : {@♭ x y : A} (@♭ p : x = y) → ap-flat p = ap-flat' p compute-ap-flat' = crisp-based-ind-Id (λ y p → ap-flat p = ap-flat' p) refl
References
- [Shu18]
- Michael Shulman. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in Computer Science, 28(6):856–941, 06 2018. arXiv:1509.07584, doi:10.1017/S0960129517000147.
Recent changes
- 2024-09-23. Fredrik Bakke. Some typos, wording improvements, and brief prose additions (#1186).
- 2024-09-06. Fredrik Bakke. Basic properties of the flat modality (#1078).