Binary dependent identifications
Content created by Egbert Rijke.
Created on 2024-12-03.
Last modified on 2024-12-03.
module foundation.binary-dependent-identifications where
Imports
open import foundation.binary-transport open import foundation.identity-types open import foundation.universe-levels
Idea
Consider a family of types C x y
indexed by x : A
and y : B
, and consider
identifications p : x = x'
and
q : y = y'
in A
and B
, respectively. A
binary dependent identification¶
from c : C x y
to c' : C x' y'
over p
and q
is a
dependent identification
r : dependent-identification (C x') p (tr (λ t → C t y) p c) c'.
Definitions
Binary dependent identifications
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (C : A → B → UU l3) where binary-dependent-identification : {x x' : A} (p : x = x') {y y' : B} (q : y = y') → C x y → C x' y' → UU l3 binary-dependent-identification p q c c' = binary-tr C p q c = c'
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).