Coalgebras over comonads on precategories
Content created by Ben Connors.
Created on 2025-06-21.
Last modified on 2025-06-21.
module category-theory.coalgebras-comonads-on-precategories where
Imports
open import category-theory.commuting-squares-of-morphisms-in-precategories open import category-theory.comonads-on-precategories open import category-theory.functors-precategories open import category-theory.natural-transformations-functors-precategories open import category-theory.natural-transformations-maps-precategories open import category-theory.precategories open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import foundation-core.cartesian-product-types
Idea
A
coalgebra¶
over a comonad T
consists of
an object A
and morphism a : A → TA
satisfying two compatibility laws:
- Counit law:
ε_A ∘ a = id_A
- Comultiplication law:
Ta ∘ a = δ ∘ a
Definitions
module _ {l1 l2 : Level} (C : Precategory l1 l2) (T : comonad-Precategory C) {A : obj-Precategory C} (a : hom-Precategory C A (obj-endofunctor-comonad-Precategory C T A)) where has-counit-law-coalgebra-comonad-Precategory : UU l2 has-counit-law-coalgebra-comonad-Precategory = comp-hom-Precategory C (hom-counit-comonad-Precategory C T A) a = id-hom-Precategory C has-comul-law-coalgebra-comonad-Precategory : UU l2 has-comul-law-coalgebra-comonad-Precategory = comp-hom-Precategory C (hom-endofunctor-comonad-Precategory C T a) a = comp-hom-Precategory C (hom-comul-comonad-Precategory C T A) a is-coalgebra-comonad-Precategory : UU l2 is-coalgebra-comonad-Precategory = has-counit-law-coalgebra-comonad-Precategory × has-comul-law-coalgebra-comonad-Precategory module _ {l1 l2 : Level} (C : Precategory l1 l2) (T : comonad-Precategory C) where coalgebra-comonad-Precategory : UU (l1 ⊔ l2) coalgebra-comonad-Precategory = Σ ( obj-Precategory C) ( λ A → Σ ( hom-Precategory C A (obj-endofunctor-comonad-Precategory C T A)) ( λ a → is-coalgebra-comonad-Precategory C T a)) obj-coalgebra-comonad-Precategory : coalgebra-comonad-Precategory → obj-Precategory C obj-coalgebra-comonad-Precategory = pr1 hom-coalgebra-comonad-Precategory : (f : coalgebra-comonad-Precategory) → hom-Precategory C ( obj-coalgebra-comonad-Precategory f) ( obj-endofunctor-comonad-Precategory C T ( obj-coalgebra-comonad-Precategory f)) hom-coalgebra-comonad-Precategory f = pr1 (pr2 f) comm-coalgebra-comonad-Precategory : (f : coalgebra-comonad-Precategory) → is-coalgebra-comonad-Precategory C T (hom-coalgebra-comonad-Precategory f) comm-coalgebra-comonad-Precategory f = pr2 (pr2 f) counit-law-coalgebra-comonad-Precategory : (f : coalgebra-comonad-Precategory) → has-counit-law-coalgebra-comonad-Precategory C T ( hom-coalgebra-comonad-Precategory f) counit-law-coalgebra-comonad-Precategory f = pr1 (pr2 (pr2 f)) comul-law-coalgebra-comonad-Precategory : (f : coalgebra-comonad-Precategory) → has-comul-law-coalgebra-comonad-Precategory C T ( hom-coalgebra-comonad-Precategory f) comul-law-coalgebra-comonad-Precategory f = pr2 (pr2 (pr2 f))
Recent changes
- 2025-06-21. Ben Connors. Dualize limits, right Kan extensions, and monads (#1442).