Bilinear maps on vector spaces
Content created by Louis Wasserman.
Created on 2026-02-13.
Last modified on 2026-02-13.
module linear-algebra.bilinear-maps-left-modules-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import linear-algebra.bilinear-maps-left-modules-rings open import linear-algebra.left-modules-commutative-rings open import linear-algebra.linear-maps-left-modules-commutative-rings
Idea
A
bilinear map¶
from two left modules X
and Y over a commutative ring R
to a third module Z is a map f : X → Y → Z which is
linear in each
argument.
Definition
module _ {l1 l2 l3 l4 : Level} (R : Commutative-Ring l1) (X : left-module-Commutative-Ring l2 R) (Y : left-module-Commutative-Ring l3 R) (Z : left-module-Commutative-Ring l4 R) (f : type-left-module-Commutative-Ring R X → type-left-module-Commutative-Ring R Y → type-left-module-Commutative-Ring R Z) where is-linear-on-left-prop-binary-map-left-module-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-left-prop-binary-map-left-module-Commutative-Ring = is-linear-on-left-prop-binary-map-left-module-Ring ( ring-Commutative-Ring R) ( X) ( Y) ( Z) ( f) is-linear-on-left-binary-map-left-module-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-left-binary-map-left-module-Commutative-Ring = type-Prop is-linear-on-left-prop-binary-map-left-module-Commutative-Ring is-linear-on-right-prop-binary-map-left-module-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-right-prop-binary-map-left-module-Commutative-Ring = is-linear-on-right-prop-binary-map-left-module-Ring ( ring-Commutative-Ring R) ( X) ( Y) ( Z) ( f) is-linear-on-right-binary-map-left-module-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-linear-on-right-binary-map-left-module-Commutative-Ring = type-Prop is-linear-on-right-prop-binary-map-left-module-Commutative-Ring is-bilinear-map-prop-left-module-Commutative-Ring : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-bilinear-map-prop-left-module-Commutative-Ring = is-bilinear-map-prop-left-module-Ring ( ring-Commutative-Ring R) ( X) ( Y) ( Z) ( f) is-bilinear-map-left-module-Commutative-Ring : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-bilinear-map-left-module-Commutative-Ring = type-Prop is-bilinear-map-prop-left-module-Commutative-Ring bilinear-map-left-module-Commutative-Ring : {l1 l2 l3 l4 : Level} (R : Commutative-Ring l1) → left-module-Commutative-Ring l2 R → left-module-Commutative-Ring l3 R → left-module-Commutative-Ring l4 R → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) bilinear-map-left-module-Commutative-Ring R X Y Z = type-subtype (is-bilinear-map-prop-left-module-Commutative-Ring R X Y Z)
Properties
module _ {l1 l2 l3 l4 : Level} (R : Commutative-Ring l1) (X : left-module-Commutative-Ring l2 R) (Y : left-module-Commutative-Ring l3 R) (Z : left-module-Commutative-Ring l4 R) (f : bilinear-map-left-module-Commutative-Ring R X Y Z) where map-bilinear-map-left-module-Commutative-Ring : type-left-module-Commutative-Ring R X → type-left-module-Commutative-Ring R Y → type-left-module-Commutative-Ring R Z map-bilinear-map-left-module-Commutative-Ring = pr1 f
Linear maps from bilinear maps
module _ {l1 l2 l3 l4 : Level} (R : Commutative-Ring l1) (X : left-module-Commutative-Ring l2 R) (Y : left-module-Commutative-Ring l3 R) (Z : left-module-Commutative-Ring l4 R) (f : bilinear-map-left-module-Commutative-Ring R X Y Z) where linear-map-ev-right-bilinear-map-left-module-Commutative-Ring : (y : type-left-module-Commutative-Ring R Y) → linear-map-left-module-Commutative-Ring R X Z linear-map-ev-right-bilinear-map-left-module-Commutative-Ring = linear-map-ev-right-bilinear-map-left-module-Ring ( ring-Commutative-Ring R) ( X) ( Y) ( Z) ( f) linear-map-ev-left-bilinear-map-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring R X) → linear-map-left-module-Commutative-Ring R Y Z linear-map-ev-left-bilinear-map-left-module-Commutative-Ring = linear-map-ev-left-bilinear-map-left-module-Ring ( ring-Commutative-Ring R) ( X) ( Y) ( Z) ( f)
Zero laws of bilinear maps
module _ {l1 l2 l3 l4 : Level} (R : Commutative-Ring l1) (X : left-module-Commutative-Ring l2 R) (Y : left-module-Commutative-Ring l3 R) (Z : left-module-Commutative-Ring l4 R) (f : bilinear-map-left-module-Commutative-Ring R X Y Z) where abstract left-zero-law-bilinear-map-left-module-Commutative-Ring : (y : type-left-module-Commutative-Ring R Y) → map-bilinear-map-left-module-Commutative-Ring R X Y Z f ( zero-left-module-Commutative-Ring R X) ( y) = zero-left-module-Commutative-Ring R Z left-zero-law-bilinear-map-left-module-Commutative-Ring = left-zero-law-bilinear-map-left-module-Ring ( ring-Commutative-Ring R) ( X) ( Y) ( Z) ( f) right-zero-law-bilinear-map-left-module-Commutative-Ring : (x : type-left-module-Commutative-Ring R X) → map-bilinear-map-left-module-Commutative-Ring R X Y Z f ( x) ( zero-left-module-Commutative-Ring R Y) = zero-left-module-Commutative-Ring R Z right-zero-law-bilinear-map-left-module-Commutative-Ring = right-zero-law-bilinear-map-left-module-Ring ( ring-Commutative-Ring R) ( X) ( Y) ( Z) ( f)
See also
External links
- Bilinear map on Wikipedia
Recent changes
- 2026-02-13. Louis Wasserman. Algebras over commutative rings (#1780).