The decidable total order of natural numbers
Content created by Fredrik Bakke, Egbert Rijke and Victor Blanchi.
Created on 2023-05-10.
Last modified on 2023-10-16.
module elementary-number-theory.decidable-total-order-natural-numbers where
Imports
open import elementary-number-theory.inequality-natural-numbers open import foundation.dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import order-theory.decidable-total-orders open import order-theory.total-orders
Idea
The type of natural numbers equipped with its standard ordering relation forms a decidable total order.
Definition
is-total-leq-ℕ : is-total-Poset ℕ-Poset is-total-leq-ℕ n m = unit-trunc-Prop (linear-leq-ℕ n m) ℕ-Total-Order : Total-Order lzero lzero pr1 ℕ-Total-Order = ℕ-Poset pr2 ℕ-Total-Order = is-total-leq-ℕ ℕ-Decidable-Total-Order : Decidable-Total-Order lzero lzero pr1 ℕ-Decidable-Total-Order = ℕ-Poset pr1 (pr2 ℕ-Decidable-Total-Order) = is-total-leq-ℕ pr2 (pr2 ℕ-Decidable-Total-Order) = is-decidable-leq-ℕ
Recent changes
- 2023-10-16. Fredrik Bakke and Egbert Rijke. The decidable total order on a standard finite type (#844).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-05-10. Victor Blanchi. Fundamental theorem of arithmetic (#612).