Function semirings
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-03-13.
Last modified on 2023-05-01.
module ring-theory.function-semirings where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import ring-theory.dependent-products-semirings open import ring-theory.semirings
Idea
Given a semiring R
and a type X
, the function semiring R^X
consists of
functions from X
into the underlying type of R
. The semiring operations are
defined pointwise
Definition
module _ {l1 l2 : Level} (R : Semiring l1) (X : UU l2) where additive-commutative-monoid-function-Semiring : Commutative-Monoid (l1 ⊔ l2) additive-commutative-monoid-function-Semiring = additive-commutative-monoid-Π-Semiring X (λ _ → R) multiplicative-monoid-function-Semiring : Monoid (l1 ⊔ l2) multiplicative-monoid-function-Semiring = multiplicative-monoid-Π-Semiring X (λ _ → R) set-function-Semiring : Set (l1 ⊔ l2) set-function-Semiring = set-Π-Semiring X (λ _ → R) type-function-Semiring : UU (l1 ⊔ l2) type-function-Semiring = type-Π-Semiring X (λ _ → R) is-set-type-function-Semiring : is-set type-function-Semiring is-set-type-function-Semiring = is-set-type-Π-Semiring X (λ _ → R) add-function-Semiring : type-function-Semiring → type-function-Semiring → type-function-Semiring add-function-Semiring = add-Π-Semiring X (λ _ → R) zero-function-Semiring : type-function-Semiring zero-function-Semiring = zero-Π-Semiring X (λ _ → R) associative-add-function-Semiring : (x y z : type-function-Semiring) → add-function-Semiring (add-function-Semiring x y) z = add-function-Semiring x (add-function-Semiring y z) associative-add-function-Semiring = associative-add-Π-Semiring X (λ _ → R) left-unit-law-add-function-Semiring : (x : type-function-Semiring) → add-function-Semiring zero-function-Semiring x = x left-unit-law-add-function-Semiring = left-unit-law-add-Π-Semiring X (λ _ → R) right-unit-law-add-function-Semiring : (x : type-function-Semiring) → add-function-Semiring x zero-function-Semiring = x right-unit-law-add-function-Semiring = right-unit-law-add-Π-Semiring X (λ _ → R) commutative-add-function-Semiring : (x y : type-function-Semiring) → add-function-Semiring x y = add-function-Semiring y x commutative-add-function-Semiring = commutative-add-Π-Semiring X (λ _ → R) mul-function-Semiring : type-function-Semiring → type-function-Semiring → type-function-Semiring mul-function-Semiring = mul-Π-Semiring X (λ _ → R) one-function-Semiring : type-function-Semiring one-function-Semiring = one-Π-Semiring X (λ _ → R) associative-mul-function-Semiring : (x y z : type-function-Semiring) → mul-function-Semiring (mul-function-Semiring x y) z = mul-function-Semiring x (mul-function-Semiring y z) associative-mul-function-Semiring = associative-mul-Π-Semiring X (λ _ → R) left-unit-law-mul-function-Semiring : (x : type-function-Semiring) → mul-function-Semiring one-function-Semiring x = x left-unit-law-mul-function-Semiring = left-unit-law-mul-Π-Semiring X (λ _ → R) right-unit-law-mul-function-Semiring : (x : type-function-Semiring) → mul-function-Semiring x one-function-Semiring = x right-unit-law-mul-function-Semiring = right-unit-law-mul-Π-Semiring X (λ _ → R) left-distributive-mul-add-function-Semiring : (f g h : type-function-Semiring) → mul-function-Semiring f (add-function-Semiring g h) = add-function-Semiring ( mul-function-Semiring f g) ( mul-function-Semiring f h) left-distributive-mul-add-function-Semiring = left-distributive-mul-add-Π-Semiring X (λ _ → R) right-distributive-mul-add-function-Semiring : (f g h : type-function-Semiring) → mul-function-Semiring (add-function-Semiring f g) h = add-function-Semiring ( mul-function-Semiring f h) ( mul-function-Semiring g h) right-distributive-mul-add-function-Semiring = right-distributive-mul-add-Π-Semiring X (λ _ → R) left-zero-law-mul-function-Semiring : (f : type-function-Semiring) → mul-function-Semiring zero-function-Semiring f = zero-function-Semiring left-zero-law-mul-function-Semiring = left-zero-law-mul-Π-Semiring X (λ _ → R) right-zero-law-mul-function-Semiring : (f : type-function-Semiring) → mul-function-Semiring f zero-function-Semiring = zero-function-Semiring right-zero-law-mul-function-Semiring = right-zero-law-mul-Π-Semiring X (λ _ → R) function-Semiring : Semiring (l1 ⊔ l2) pr1 function-Semiring = additive-commutative-monoid-function-Semiring pr1 (pr1 (pr1 (pr2 function-Semiring))) = mul-function-Semiring pr2 (pr1 (pr1 (pr2 function-Semiring))) = associative-mul-function-Semiring pr1 (pr1 (pr2 (pr1 (pr2 function-Semiring)))) = one-function-Semiring pr1 (pr2 (pr1 (pr2 (pr1 (pr2 function-Semiring))))) = left-unit-law-mul-function-Semiring pr2 (pr2 (pr1 (pr2 (pr1 (pr2 function-Semiring))))) = right-unit-law-mul-function-Semiring pr1 (pr2 (pr2 (pr1 (pr2 function-Semiring)))) = left-distributive-mul-add-function-Semiring pr2 (pr2 (pr2 (pr1 (pr2 function-Semiring)))) = right-distributive-mul-add-function-Semiring pr1 (pr2 (pr2 function-Semiring)) = left-zero-law-mul-function-Semiring pr2 (pr2 (pr2 function-Semiring)) = right-zero-law-mul-function-Semiring
Recent changes
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).