Algebras of algebraic theories
Content created by Fredrik Bakke.
Created on 2025-10-31.
Last modified on 2025-10-31.
module universal-algebra.algebras where
Imports
open import foundation.dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.subtype-identity-principle open import foundation.torsorial-type-families open import foundation.universe-levels open import foundation-core.equivalences open import universal-algebra.abstract-equations-over-signatures open import universal-algebra.algebraic-theories open import universal-algebra.equivalences-models-of-signatures open import universal-algebra.models-of-signatures open import universal-algebra.signatures open import universal-algebra.terms-over-signatures
Idea
Given an algebraic theory, an algebra¶ is a model of a single-sorted finitary algebraic signature on a set that satisfies all equations in the theory.
Definitions
The predicate of being an algebra
module _ {l1 l2 : Level} (σ : signature l1) (T : Algebraic-Theory l2 σ) where is-algebra : {l3 : Level} → Model-Of-Signature l3 σ → UU (l2 ⊔ l3) is-algebra M = (e : index-Algebraic-Theory σ T) → (assign : assignment σ (type-Model-Of-Signature σ M)) → eval-term σ (is-model-set-Model-Of-Signature σ M) assign ( lhs-abstract-equation σ ( index-abstract-equation-Algebraic-Theory σ T e)) = eval-term σ (is-model-set-Model-Of-Signature σ M) assign ( rhs-abstract-equation σ ( index-abstract-equation-Algebraic-Theory σ T e))
The type of algebras
Algebra : {l1 l2 : Level} (l3 : Level) (σ : signature l1) → Algebraic-Theory l2 σ → UU (l1 ⊔ l2 ⊔ lsuc l3) Algebra l3 σ T = Σ (Model-Of-Signature l3 σ) (is-algebra σ T) module _ {l1 l2 l3 : Level} (σ : signature l1) (T : Algebraic-Theory l2 σ) (A : Algebra l3 σ T) where model-Algebra : Model-Of-Signature l3 σ model-Algebra = pr1 A set-Algebra : Set l3 set-Algebra = set-Model-Of-Signature σ model-Algebra is-model-set-Algebra : is-model-of-signature σ set-Algebra is-model-set-Algebra = is-model-set-Model-Of-Signature σ model-Algebra type-Algebra : UU l3 type-Algebra = type-Set set-Algebra is-set-type-Algebra : is-set type-Algebra is-set-type-Algebra = is-set-type-Set set-Algebra is-algebra-Algebra : is-algebra σ T model-Algebra is-algebra-Algebra = pr2 A
Properties
Being an algebra is a proposition
module _ {l1 l2 l3 : Level} (σ : signature l1) (T : Algebraic-Theory l2 σ) (X : Model-Of-Signature l3 σ) where abstract is-prop-is-algebra : is-prop (is-algebra σ T X) is-prop-is-algebra = is-prop-Π ( λ e → ( is-prop-Π ( λ _ → is-set-type-Model-Of-Signature σ X _ _))) is-algebra-Prop : Prop (l2 ⊔ l3) is-algebra-Prop = (is-algebra σ T X , is-prop-is-algebra)
External links
- Algebraic structure at Wikidata
Recent changes
- 2025-10-31. Fredrik Bakke. Refactor
universal-algebra(#1657).