Evaluation of functions
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2024-02-06.
Last modified on 2024-02-06.
module foundation.evaluation-functions where
Imports
open import foundation.action-on-identifications-functions open import foundation.universe-levels open import foundation-core.identity-types
Idea
Consider a family of types B
over A
and let a : A
be an element. The
evaluation function¶ at a
ev : ((x : A) → B x) → B a
is the map given by f ↦ f a
, evaluating dependent functions at a
.
Definitions
The evaluation function
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) where ev : ((x : A) → B x) → B a ev f = f a
The evaluation function with an explicit type family
module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (a : A) where ev-dependent-function : ((x : A) → B x) → B a ev-dependent-function = ev a
The evaluation function for nondependent functions
module _ {l1 l2 : Level} {A : UU l1} (B : UU l2) (a : A) where ev-function : (A → B) → B ev-function = ev a
The evaluation function of implicit functions
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} (a : A) where ev-implicit-function : ({x : A} → B x) → B a ev-implicit-function f = f {a}
The evaluation function of implicit functions, specified with an explicit type family
module _ {l1 l2 : Level} {A : UU l1} (B : A → UU l2) (a : A) where ev-implicit-function' : ({x : A} → B x) → B a ev-implicit-function' = ev-implicit-function a
See also
- The
action on identifications
of the evaluation map is the function
a ↦ λ p → htpy-eq p a
defined in Function extensionality.
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).