Precomposition of type families
Content created by Egbert Rijke, Fredrik Bakke, Raymond Baker and Vojtěch Štěpančík.
Created on 2023-12-05.
Last modified on 2024-02-06.
module foundation.precomposition-type-families where
Imports
open import foundation.homotopy-induction open import foundation.transport-along-homotopies open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.identity-types
Idea
Any map f : A → B
induces a
precomposition operation¶
(B → 𝒰) → (A → 𝒰)
given by precomposing any
Q : B → 𝒰
to Q ∘ f : A → 𝒰
.
Definitions
The precomposition operation on type familes
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where precomp-family : {l : Level} → (B → UU l) → (A → UU l) precomp-family Q = Q ∘ f
Properties
Transport along homotopies in precomposed type families
Transporting along a
homotopy H : g ~ h
in the family Q ∘ f
gives us
a map of families of elements
((a : A) → Q (f (g a))) → ((a : A) → Q (f (h a))) .
We show that this map is homotopic to transporting along
f ·l H : f ∘ g ~ f ∘ h
in the family Q
.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} (f : A → B) (Q : B → UU l3) {X : UU l4} {g : X → A} where statement-tr-htpy-precomp-family : {h : X → A} (H : g ~ h) → UU (l3 ⊔ l4) statement-tr-htpy-precomp-family H = tr-htpy (λ _ → precomp-family f Q) H ~ tr-htpy (λ _ → Q) (f ·l H) abstract tr-htpy-precomp-family : {h : X → A} (H : g ~ h) → statement-tr-htpy-precomp-family H tr-htpy-precomp-family = ind-htpy g ( λ h → statement-tr-htpy-precomp-family) ( refl-htpy) compute-tr-htpy-precomp-family : tr-htpy-precomp-family refl-htpy = refl-htpy compute-tr-htpy-precomp-family = compute-ind-htpy g ( λ h → statement-tr-htpy-precomp-family) ( refl-htpy)
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).
- 2024-01-27. Vojtěch Štěpančík. Refactor properties of lifts of families out of 26-descent (#988).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-12-05. Raymond Baker and Egbert Rijke. Universal property of fibers (#944).