Descent data for sequential colimits
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.descent-data-sequential-colimits where
Imports
open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-sequential-diagrams open import synthetic-homotopy-theory.dependent-sequential-diagrams open import synthetic-homotopy-theory.equifibered-sequential-diagrams open import synthetic-homotopy-theory.equivalences-dependent-sequential-diagrams open import synthetic-homotopy-theory.morphisms-dependent-sequential-diagrams open import synthetic-homotopy-theory.sequential-diagrams
Idea
Given a sequential diagram
(A, a)
, we may ask how to construct type families over its
sequential colimit.
The data required to construct a type family is called descent data¶ for sequential colimits, and it is exactly an equifibered sequential diagram.
The fact that the type of descent data for a sequential diagram is equivalent to
the type of type families over its colimit is recorded in
descent-property-sequential-colimits
.
Definitions
Descent data for sequential colimits
module _ {l1 : Level} (A : sequential-diagram l1) where descent-data-sequential-colimit : (l2 : Level) → UU (l1 ⊔ lsuc l2) descent-data-sequential-colimit = equifibered-sequential-diagram A
Components of descent data for sequential colimits
module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : descent-data-sequential-colimit A l2) where family-descent-data-sequential-colimit : (n : ℕ) → family-sequential-diagram A n → UU l2 family-descent-data-sequential-colimit = pr1 B equiv-family-descent-data-sequential-colimit : (n : ℕ) (a : family-sequential-diagram A n) → family-descent-data-sequential-colimit n a ≃ family-descent-data-sequential-colimit ( succ-ℕ n) ( map-sequential-diagram A n a) equiv-family-descent-data-sequential-colimit = pr2 B map-family-descent-data-sequential-colimit : (n : ℕ) (a : family-sequential-diagram A n) → family-descent-data-sequential-colimit n a → family-descent-data-sequential-colimit ( succ-ℕ n) ( map-sequential-diagram A n a) map-family-descent-data-sequential-colimit n a = map-equiv (equiv-family-descent-data-sequential-colimit n a) is-equiv-map-family-descent-data-sequential-colimit : (n : ℕ) (a : family-sequential-diagram A n) → is-equiv (map-family-descent-data-sequential-colimit n a) is-equiv-map-family-descent-data-sequential-colimit n a = is-equiv-map-equiv (equiv-family-descent-data-sequential-colimit n a) dependent-sequential-diagram-descent-data : dependent-sequential-diagram A l2 dependent-sequential-diagram-descent-data = dependent-sequential-diagram-equifibered-sequential-diagram B
Morphisms of descent data for sequential colimits
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} (B : descent-data-sequential-colimit A l2) (C : descent-data-sequential-colimit A l3) where hom-descent-data-sequential-colimit : UU (l1 ⊔ l2 ⊔ l3) hom-descent-data-sequential-colimit = hom-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram B) ( dependent-sequential-diagram-equifibered-sequential-diagram C)
Equivalences of descent data for sequential colimits
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} (B : descent-data-sequential-colimit A l2) (C : descent-data-sequential-colimit A l3) where equiv-descent-data-sequential-colimit : UU (l1 ⊔ l2 ⊔ l3) equiv-descent-data-sequential-colimit = equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram B) ( dependent-sequential-diagram-equifibered-sequential-diagram C) module _ (e : equiv-descent-data-sequential-colimit) where equiv-equiv-descent-data-sequential-colimit : (n : ℕ) (a : family-sequential-diagram A n) → family-descent-data-sequential-colimit B n a ≃ family-descent-data-sequential-colimit C n a equiv-equiv-descent-data-sequential-colimit = equiv-equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram C) ( e) map-equiv-descent-data-sequential-colimit : (n : ℕ) (a : family-sequential-diagram A n) → family-descent-data-sequential-colimit B n a → family-descent-data-sequential-colimit C n a map-equiv-descent-data-sequential-colimit = map-equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram C) ( e) is-equiv-map-equiv-descent-data-sequential-colimit : (n : ℕ) (a : family-sequential-diagram A n) → is-equiv (map-equiv-descent-data-sequential-colimit n a) is-equiv-map-equiv-descent-data-sequential-colimit = is-equiv-map-equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram C) ( e) coh-equiv-descent-data-sequential-colimit : coherence-equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram B) ( dependent-sequential-diagram-equifibered-sequential-diagram C) ( equiv-equiv-descent-data-sequential-colimit) coh-equiv-descent-data-sequential-colimit = coh-equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram C) ( e) hom-equiv-descent-data-sequential-colimit : hom-descent-data-sequential-colimit B C hom-equiv-descent-data-sequential-colimit = hom-equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram C) ( e) module _ {l1 l2 : Level} {A : sequential-diagram l1} (B : descent-data-sequential-colimit A l2) where id-equiv-descent-data-sequential-colimit : equiv-descent-data-sequential-colimit B B id-equiv-descent-data-sequential-colimit = id-equiv-dependent-sequential-diagram ( dependent-sequential-diagram-equifibered-sequential-diagram B)
Descent data induced by families over cocones under sequential diagrams
module _ {l1 l2 : Level} {A : sequential-diagram l1} {X : UU l2} (c : cocone-sequential-diagram A X) where descent-data-family-cocone-sequential-diagram : {l3 : Level} → (X → UU l3) → descent-data-sequential-colimit A l3 descent-data-family-cocone-sequential-diagram = equifibered-sequential-diagram-family-cocone c
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).