Coinitial maps in posets
Content created by Louis Wasserman.
Created on 2026-02-07.
Last modified on 2026-02-07.
module order-theory.coinitial-maps-posets where
Imports
open import foundation.existential-quantification open import foundation.propositions open import foundation.universe-levels open import order-theory.posets
Idea
A map between posets f : A → B is
coinitial¶
if for any b : B, there exists an
a : A such that f a ≤ b.
Definition
module _ {l1 l2 l3 : Level} {A : UU l1} (P : Poset l2 l3) (f : A → type-Poset P) where is-coinitial-prop-map-Poset : Prop (l1 ⊔ l2 ⊔ l3) is-coinitial-prop-map-Poset = Π-Prop ( type-Poset P) ( λ y → ∃ A (λ x → leq-prop-Poset P (f x) y)) is-coinitial-map-Poset : UU (l1 ⊔ l2 ⊔ l3) is-coinitial-map-Poset = type-Prop is-coinitial-prop-map-Poset
See also
Recent changes
- 2026-02-07. Louis Wasserman. Odd roots of real numbers (#1739).