Multiplication of nonpositive rational numbers
Content created by Louis Wasserman.
Created on 2025-10-07.
Last modified on 2025-10-07.
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.multiplication-nonpositive-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.multiplication-nonnegative-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.nonpositive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.action-on-identifications-functions open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.transport-along-identifications
Idea
The product of two nonpositive rational numbers is their product as rational numbers, and is nonnegative.
Definition
abstract is-nonnegative-mul-nonpositive-ℚ : {x y : ℚ} → is-nonpositive-ℚ x → is-nonpositive-ℚ y → is-nonnegative-ℚ (x *ℚ y) is-nonnegative-mul-nonpositive-ℚ {x} {y} nonpos-x nonpos-y = tr ( is-nonnegative-ℚ) ( negative-law-mul-ℚ x y) ( is-nonnegative-mul-ℚ _ _ nonpos-x nonpos-y) mul-nonpositive-ℚ : ℚ⁰⁻ → ℚ⁰⁻ → ℚ⁰⁺ mul-nonpositive-ℚ (p , nonpos-p) (q , nonpos-q) = (p *ℚ q , is-nonnegative-mul-nonpositive-ℚ nonpos-p nonpos-q)
Properties
Multiplication by a nonpositive rational number reverses inequality
abstract reverses-leq-right-mul-ℚ⁰⁻ : (p : ℚ⁰⁻) (q r : ℚ) → leq-ℚ q r → leq-ℚ (r *ℚ rational-ℚ⁰⁻ p) (q *ℚ rational-ℚ⁰⁻ p) reverses-leq-right-mul-ℚ⁰⁻ (p , nonpos-p) q r q≤r = binary-tr ( leq-ℚ) ( ap neg-ℚ (right-negative-law-mul-ℚ r p) ∙ neg-neg-ℚ _) ( ap neg-ℚ (right-negative-law-mul-ℚ q p) ∙ neg-neg-ℚ _) ( neg-leq-ℚ _ _ ( preserves-leq-right-mul-ℚ⁰⁺ (neg-ℚ p , nonpos-p) q r q≤r))
Recent changes
- 2025-10-07. Louis Wasserman. Multiplication of interior intervals in the rational numbers (#1561).