Images of metric spaces under isometries
Content created by Louis Wasserman.
Created on 2025-08-31.
Last modified on 2025-08-31.
module metric-spaces.images-isometries-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.images open import foundation.universe-levels open import metric-spaces.equality-of-metric-spaces open import metric-spaces.functions-metric-spaces open import metric-spaces.images-metric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.metric-spaces
Idea
Given an isometry between
metric spaces f : X → Y
, the unit map of the
image of f
is an
isometric equivalence.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : isometry-Metric-Space X Y) where im-isometry-Metric-Space : Metric-Space (l1 ⊔ l3) l4 im-isometry-Metric-Space = im-Metric-Space X Y (map-isometry-Metric-Space X Y f) type-im-isometry-Metric-Space : UU (l1 ⊔ l3) type-im-isometry-Metric-Space = im (map-isometry-Metric-Space X Y f) equiv-unit-im-isometry-Metric-Space : type-Metric-Space X ≃ type-im-isometry-Metric-Space equiv-unit-im-isometry-Metric-Space = equiv-im-emb (emb-map-isometry-Metric-Space X Y f) map-unit-im-isometry-Metric-Space : type-Metric-Space X → type-im-isometry-Metric-Space map-unit-im-isometry-Metric-Space = map-unit-im (map-isometry-Metric-Space X Y f)
Properties
The unit map of the image is an isometry
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : isometry-Metric-Space X Y) where is-isometry-map-unit-im-isometry-Metric-Space : is-isometry-Metric-Space ( X) ( im-isometry-Metric-Space X Y f) ( map-unit-im-isometry-Metric-Space X Y f) is-isometry-map-unit-im-isometry-Metric-Space = is-isometry-map-isometry-Metric-Space X Y f isometry-map-unit-im-isometry-Metric-Space : isometry-Metric-Space X (im-isometry-Metric-Space X Y f) isometry-map-unit-im-isometry-Metric-Space = ( map-unit-im-isometry-Metric-Space X Y f , is-isometry-map-unit-im-isometry-Metric-Space) isometric-equiv-im-isometry-Metric-Space : isometric-equiv-Metric-Space X (im-isometry-Metric-Space X Y f) isometric-equiv-im-isometry-Metric-Space = ( equiv-unit-im-isometry-Metric-Space X Y f , is-isometry-map-unit-im-isometry-Metric-Space)
Recent changes
- 2025-08-31. Louis Wasserman. The image of a totally bounded metric space under a uniformly continuous function is totally bounded (#1513).