Images of metric spaces under isometries

Content created by Louis Wasserman.

Created on 2025-08-31.
Last modified on 2025-08-31.

module metric-spaces.images-isometries-metric-spaces where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.images
open import foundation.universe-levels

open import metric-spaces.equality-of-metric-spaces
open import metric-spaces.functions-metric-spaces
open import metric-spaces.images-metric-spaces
open import metric-spaces.isometries-metric-spaces
open import metric-spaces.metric-spaces

Idea

Given an isometry between metric spaces f : X → Y, the unit map of the image of f is an isometric equivalence.

Definition

module _
  {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4)
  (f : isometry-Metric-Space X Y)
  where

  im-isometry-Metric-Space : Metric-Space (l1  l3) l4
  im-isometry-Metric-Space =
    im-Metric-Space X Y (map-isometry-Metric-Space X Y f)

  type-im-isometry-Metric-Space : UU (l1  l3)
  type-im-isometry-Metric-Space = im (map-isometry-Metric-Space X Y f)

  equiv-unit-im-isometry-Metric-Space :
    type-Metric-Space X  type-im-isometry-Metric-Space
  equiv-unit-im-isometry-Metric-Space =
    equiv-im-emb (emb-map-isometry-Metric-Space X Y f)

  map-unit-im-isometry-Metric-Space :
    type-Metric-Space X  type-im-isometry-Metric-Space
  map-unit-im-isometry-Metric-Space =
    map-unit-im (map-isometry-Metric-Space X Y f)

Properties

The unit map of the image is an isometry

module _
  {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4)
  (f : isometry-Metric-Space X Y)
  where

  is-isometry-map-unit-im-isometry-Metric-Space :
    is-isometry-Metric-Space
      ( X)
      ( im-isometry-Metric-Space X Y f)
      ( map-unit-im-isometry-Metric-Space X Y f)
  is-isometry-map-unit-im-isometry-Metric-Space =
    is-isometry-map-isometry-Metric-Space X Y f

  isometry-map-unit-im-isometry-Metric-Space :
    isometry-Metric-Space X (im-isometry-Metric-Space X Y f)
  isometry-map-unit-im-isometry-Metric-Space =
    ( map-unit-im-isometry-Metric-Space X Y f ,
      is-isometry-map-unit-im-isometry-Metric-Space)

  isometric-equiv-im-isometry-Metric-Space :
    isometric-equiv-Metric-Space X (im-isometry-Metric-Space X Y f)
  isometric-equiv-im-isometry-Metric-Space =
    ( equiv-unit-im-isometry-Metric-Space X Y f ,
      is-isometry-map-unit-im-isometry-Metric-Space)

Recent changes