Equivalences between precategories

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-09-13.
Last modified on 2024-03-11.

module category-theory.equivalences-of-precategories where
Imports
open import category-theory.functors-precategories
open import category-theory.natural-isomorphisms-functors-precategories
open import category-theory.precategories

open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.universe-levels

Idea

A functor F : C → D is an equivalence of precategories if there is

  1. a functor G : D → C such that G ∘ F is naturally isomorphic to the identity functor on C,
  2. a functor H : D → C such that F ∘ H is naturally isomorphic to the identity functor on D.

Definition

The predicate on functors of being an equivalence of precategories

module _
  {l1 l2 l3 l4 : Level}
  (C : Precategory l1 l2)
  (D : Precategory l3 l4)
  where

  is-equiv-functor-Precategory :
    functor-Precategory C D  UU (l1  l2  l3  l4)
  is-equiv-functor-Precategory F =
    Σ ( functor-Precategory D C)
      ( λ G 
        ( natural-isomorphism-Precategory C C
          ( comp-functor-Precategory C D C G F)
          ( id-functor-Precategory C))) ×
    Σ ( functor-Precategory D C)
      ( λ H 
        ( natural-isomorphism-Precategory D D
          ( comp-functor-Precategory D C D F H)
          ( id-functor-Precategory D)))

The type of equivalences of precategories

  equiv-Precategory : UU (l1  l2  l3  l4)
  equiv-Precategory = Σ (functor-Precategory C D) (is-equiv-functor-Precategory)

Recent changes