Metric abelian groups
Content created by Louis Wasserman.
Created on 2025-09-03.
Last modified on 2025-09-03.
module analysis.metric-abelian-groups where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.action-on-identifications-binary-functions open import foundation.binary-relations open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import metric-spaces.extensionality-pseudometric-spaces open import metric-spaces.isometries-metric-spaces open import metric-spaces.isometries-pseudometric-spaces open import metric-spaces.metric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.rational-neighborhood-relations
Idea
A metric abelian group¶ is an abelian group endowed with the structure of a metric space such that the addition operation and negation operation are isometries.
Definition
Metric-Ab : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Metric-Ab l1 l2 = Σ ( Ab l1) ( λ G → Σ ( Pseudometric-Structure l2 (type-Ab G)) ( λ M → let MS = (type-Ab G , M) in is-extensional-Pseudometric-Space MS × is-isometry-Pseudometric-Space MS MS (neg-Ab G) × ( (x : type-Ab G) → is-isometry-Pseudometric-Space MS MS (add-Ab G x)))) module _ {l1 l2 : Level} (MG : Metric-Ab l1 l2) where ab-Metric-Ab : Ab l1 ab-Metric-Ab = pr1 MG type-Metric-Ab : UU l1 type-Metric-Ab = type-Ab ab-Metric-Ab
Abelian group properties of metric abelian groups
module _ {l1 l2 : Level} (MG : Metric-Ab l1 l2) where zero-Metric-Ab : type-Metric-Ab MG zero-Metric-Ab = zero-Ab (ab-Metric-Ab MG) add-Metric-Ab : type-Metric-Ab MG → type-Metric-Ab MG → type-Metric-Ab MG add-Metric-Ab = add-Ab (ab-Metric-Ab MG) add-Metric-Ab' : type-Metric-Ab MG → type-Metric-Ab MG → type-Metric-Ab MG add-Metric-Ab' = add-Ab' (ab-Metric-Ab MG) ap-add-Metric-Ab : {x x' y y' : type-Metric-Ab MG} → x = x' → y = y' → add-Metric-Ab x y = add-Metric-Ab x' y' ap-add-Metric-Ab = ap-add-Ab (ab-Metric-Ab MG) neg-Metric-Ab : type-Metric-Ab MG → type-Metric-Ab MG neg-Metric-Ab = neg-Ab (ab-Metric-Ab MG) diff-Metric-Ab : type-Metric-Ab MG → type-Metric-Ab MG → type-Metric-Ab MG diff-Metric-Ab x y = add-Metric-Ab x (neg-Metric-Ab y) ap-diff-Metric-Ab : {x x' y y' : type-Metric-Ab MG} → x = x' → y = y' → diff-Metric-Ab x y = diff-Metric-Ab x' y' ap-diff-Metric-Ab = ap-right-subtraction-Ab (ab-Metric-Ab MG) commutative-add-Metric-Ab : (x y : type-Metric-Ab MG) → add-Metric-Ab x y = add-Metric-Ab y x commutative-add-Metric-Ab = commutative-add-Ab (ab-Metric-Ab MG)
Metric properties of metric abelian groups
module _ {l1 l2 : Level} (MG : Metric-Ab l1 l2) where pseudometric-structure-Metric-Ab : Pseudometric-Structure l2 (type-Metric-Ab MG) pseudometric-structure-Metric-Ab = pr1 (pr2 MG) pseudometric-space-Metric-Ab : Pseudometric-Space l1 l2 pseudometric-space-Metric-Ab = ( type-Metric-Ab MG , pseudometric-structure-Metric-Ab) metric-space-Metric-Ab : Metric-Space l1 l2 metric-space-Metric-Ab = ( pseudometric-space-Metric-Ab , pr1 (pr2 (pr2 MG))) neighborhood-prop-Metric-Ab : Rational-Neighborhood-Relation l2 (type-Metric-Ab MG) neighborhood-prop-Metric-Ab = neighborhood-prop-Metric-Space metric-space-Metric-Ab neighborhood-Metric-Ab : ℚ⁺ → Relation l2 (type-Metric-Ab MG) neighborhood-Metric-Ab = neighborhood-Metric-Space metric-space-Metric-Ab is-isometry-add-Metric-Ab : (x : type-Metric-Ab MG) → is-isometry-Metric-Space ( metric-space-Metric-Ab) ( metric-space-Metric-Ab) ( add-Metric-Ab MG x) is-isometry-add-Metric-Ab = pr2 (pr2 (pr2 (pr2 MG))) isometry-add-Metric-Ab : (x : type-Metric-Ab MG) → isometry-Metric-Space ( metric-space-Metric-Ab) ( metric-space-Metric-Ab) isometry-add-Metric-Ab x = (add-Metric-Ab MG x , is-isometry-add-Metric-Ab x) is-isometry-neg-Metric-Ab : is-isometry-Metric-Space ( metric-space-Metric-Ab) ( metric-space-Metric-Ab) ( neg-Metric-Ab MG) is-isometry-neg-Metric-Ab = pr1 (pr2 (pr2 (pr2 MG))) isometry-neg-Metric-Ab : isometry-Metric-Space ( metric-space-Metric-Ab) ( metric-space-Metric-Ab) isometry-neg-Metric-Ab = (neg-Metric-Ab MG , is-isometry-neg-Metric-Ab)
Recent changes
- 2025-09-03. Louis Wasserman. Series in metric abelian groups (#1528).