Null types

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2023-05-09.
Last modified on 2024-04-11.

module orthogonal-factorization-systems.null-types where
Imports
open import foundation.constant-maps
open import foundation.dependent-pair-types
open import foundation.diagonal-maps-of-types
open import foundation.equivalences
open import foundation.fibers-of-maps
open import foundation.logical-equivalences
open import foundation.precomposition-functions
open import foundation.propositions
open import foundation.type-arithmetic-unit-type
open import foundation.unit-type
open import foundation.universal-property-family-of-fibers-of-maps
open import foundation.universe-levels

open import orthogonal-factorization-systems.local-types

Idea

A type A is said to be null at Y, or Y-null, if the diagonal map

  Δ : A → (Y → A)

is an equivalence. The idea is that A observes the type Y to be contractible.

Definition

module _
  {l1 l2 : Level} (Y : UU l1) (A : UU l2)
  where

  is-null : UU (l1  l2)
  is-null = is-equiv (diagonal-exponential A Y)

  is-prop-is-null : is-prop is-null
  is-prop-is-null = is-property-is-equiv (diagonal-exponential A Y)

  is-null-Prop : Prop (l1  l2)
  pr1 is-null-Prop = is-null
  pr2 is-null-Prop = is-prop-is-null

Properties

A type is Y-null if and only if it is local at the terminal projection Y → unit

module _
  {l1 l2 : Level} (Y : UU l1) (A : UU l2)
  where

  is-local-is-null : is-null Y A  is-local  y  star) A
  is-local-is-null =
    is-equiv-comp
      ( diagonal-exponential A Y)
      ( map-left-unit-law-function-type A)
      ( is-equiv-map-left-unit-law-function-type A)

  is-null-is-local : is-local  y  star) A  is-null Y A
  is-null-is-local =
    is-equiv-comp
      ( precomp  y  star) A)
      ( map-inv-left-unit-law-function-type A)
      ( is-equiv-map-inv-left-unit-law-function-type A)

  equiv-is-local-is-null : is-null Y A  is-local  y  star) A
  equiv-is-local-is-null =
    equiv-iff-is-prop
      ( is-property-is-equiv (diagonal-exponential A Y))
      ( is-property-is-equiv (precomp  y  star) A))
      ( is-local-is-null)
      ( is-null-is-local)

  equiv-is-null-is-local : is-local  y  star) A  is-null Y A
  equiv-is-null-is-local = inv-equiv equiv-is-local-is-null

A type is f-local if it is null at every fiber of f

module _
  {l1 l2 l3 : Level} {Y : UU l1} {X : UU l2} (f : Y  X)
  where

  is-local-dependent-type-is-null-fiber :
    (A : X  UU l3) 
    ((x : X)  is-null (fiber f x) (A x))  is-local-dependent-type f A
  is-local-dependent-type-is-null-fiber A = is-equiv-precomp-Π-fiber-condition

  is-local-is-null-fiber :
    (A : UU l3)  ((x : X)  is-null (fiber f x) A)  is-local f A
  is-local-is-null-fiber A = is-local-dependent-type-is-null-fiber  _  A)

Recent changes