Function large equivalence relations
Content created by Louis Wasserman.
Created on 2025-11-16.
Last modified on 2025-11-16.
module foundation.function-large-equivalence-relations where
Imports
open import foundation.large-equivalence-relations open import foundation.propositions open import foundation.universe-levels
Idea
Given a large equivalence relation
on X and a type A, there is an induced large equivalence relation on
A → X.
Definition
module _ {l1 : Level} {α : Level → Level} {β : Level → Level → Level} {X : (l : Level) → UU (α l)} (A : UU l1) (R : Large-Equivalence-Relation β X) where function-Large-Equivalence-Relation : Large-Equivalence-Relation ( λ l2 l3 → l1 ⊔ β l2 l3) ( λ l → A → X l) sim-prop-Large-Equivalence-Relation function-Large-Equivalence-Relation f g = Π-Prop A (λ a → sim-prop-Large-Equivalence-Relation R (f a) (g a)) refl-sim-Large-Equivalence-Relation function-Large-Equivalence-Relation f a = refl-sim-Large-Equivalence-Relation R (f a) symmetric-sim-Large-Equivalence-Relation function-Large-Equivalence-Relation f g f~g a = symmetric-sim-Large-Equivalence-Relation R (f a) (g a) (f~g a) transitive-sim-Large-Equivalence-Relation function-Large-Equivalence-Relation f g h g~h f~g a = transitive-sim-Large-Equivalence-Relation ( R) ( f a) ( g a) ( h a) ( g~h a) ( f~g a)
Recent changes
- 2025-11-16. Louis Wasserman. Large function commutative rings (#1719).