Discrete categories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-05-06.
Last modified on 2024-03-11.
module category-theory.discrete-categories where
Imports
open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Discrete precategories
Any set induces a discrete category whose objects are elements of the set and which contains no-nonidentity morphisms.
module _ {l : Level} (X : Set l) where discrete-precategory-Set : Precategory l l discrete-precategory-Set = make-Precategory ( type-Set X) ( λ x y → set-Prop (Id-Prop X x y)) ( λ p q → q ∙ p) ( λ x → refl) ( λ h g f → inv (assoc f g h)) ( λ _ → right-unit) ( λ _ → left-unit)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-06-25. Fredrik Bakke. Fix alignment
where
blocks (#670). - 2023-05-06. Egbert Rijke. Big cleanup throughout library (#594).