Multiplication of positive, negative, and nonnegative rational numbers
Content created by Louis Wasserman.
Created on 2025-10-07.
Last modified on 2025-10-07.
module elementary-number-theory.multiplication-positive-and-negative-rational-numbers where
Imports
open import elementary-number-theory.multiplication-nonnegative-rational-numbers open import elementary-number-theory.multiplication-positive-and-negative-integers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.nonpositive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.transport-along-identifications
Idea
When we have information about the sign of the factors of a rational product, we can deduce the sign of their product too.
Lemmas
The product of a positive and a negative rational number is negative
opaque unfolding mul-ℚ is-negative-mul-positive-negative-ℚ : {x y : ℚ} → is-positive-ℚ x → is-negative-ℚ y → is-negative-ℚ (x *ℚ y) is-negative-mul-positive-negative-ℚ pos-x neg-y = is-negative-rational-fraction-ℤ ( is-negative-mul-positive-negative-ℤ ( pos-x) ( is-negative-fraction-ℚ⁻ (_ , neg-y))) mul-positive-negative-ℚ : ℚ⁺ → ℚ⁻ → ℚ⁻ mul-positive-negative-ℚ (p , pos-p) (q , neg-q) = ( p *ℚ q , is-negative-mul-positive-negative-ℚ pos-p neg-q)
The product of a negative and a positive rational number is negative
abstract is-negative-mul-negative-positive-ℚ : {x y : ℚ} → is-negative-ℚ x → is-positive-ℚ y → is-negative-ℚ (x *ℚ y) is-negative-mul-negative-positive-ℚ neg-x pos-y = tr ( is-negative-ℚ) ( commutative-mul-ℚ _ _) ( is-negative-mul-positive-negative-ℚ pos-y neg-x) mul-negative-positive-ℚ : ℚ⁻ → ℚ⁺ → ℚ⁻ mul-negative-positive-ℚ (p , neg-p) (q , pos-q) = ( p *ℚ q , is-negative-mul-negative-positive-ℚ neg-p pos-q)
Recent changes
- 2025-10-07. Louis Wasserman. Multiplication of interior intervals in the rational numbers (#1561).