Induction principles on W-types

Content created by Fredrik Bakke, Jonathan Prieto-Cubides, Egbert Rijke and Victor Blanchi.

Created on 2023-01-26.
Last modified on 2023-09-11.

module trees.induction-w-types where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.action-on-identifications-functions
open import foundation.dependent-pair-types
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.identity-types
open import foundation.negation
open import foundation.transport-along-identifications
open import foundation.universe-levels

open import trees.elementhood-relation-w-types
open import trees.inequality-w-types
open import trees.w-types

Idea

There are several induction principles on W-types, besided the induction principle that each W-type comes equipped with by definition. The first is an induction principle formulated with respect to the elementhood relation on W-types. The second is a strong induction principle, analogous to the strong induction principle for the natural numbers.

Properties

Induction principle with respect to the elementhood relation

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2}
  where

  □-∈-𝕎 : (𝕎 A B  UU l3)  (𝕎 A B  UU (l1  l2  l3))
  □-∈-𝕎 P x = (y : 𝕎 A B)  (y ∈-𝕎 x)  P y

  η-□-∈-𝕎 :
    (P : 𝕎 A B  UU l3)  ((x : 𝕎 A B)  P x)  ((x : 𝕎 A B)  □-∈-𝕎 P x)
  η-□-∈-𝕎 P f x y e = f y

  ε-□-∈-𝕎 :
    (P : 𝕎 A B  UU l3) (h : (y : 𝕎 A B)  □-∈-𝕎 P y  P y) 
    ((x : 𝕎 A B)  □-∈-𝕎 P x)  (x : 𝕎 A B)  P x
  ε-□-∈-𝕎 P h f x = h x (f x)

  ind-□-∈-𝕎 :
    (P : 𝕎 A B  UU l3) (h : (y : 𝕎 A B)  □-∈-𝕎 P y  P y) 
    (x : 𝕎 A B)  □-∈-𝕎 P x
  ind-□-∈-𝕎 P h (tree-𝕎 x α) .(α b) (pair b refl) =
    h (α b) (ind-□-∈-𝕎 P h (α b))

  compute-□-∈-𝕎 :
    (P : 𝕎 A B  UU l3) (h : (y : 𝕎 A B)  □-∈-𝕎 P y  P y) 
    (x y : 𝕎 A B) (e : y ∈-𝕎 x) 
    ind-□-∈-𝕎 P h x y e  h y (ind-□-∈-𝕎 P h y)
  compute-□-∈-𝕎 P h (tree-𝕎 x α) .(α b) (pair b refl) = refl

  ind-∈-𝕎 :
    (P : 𝕎 A B  UU l3) (h : (y : 𝕎 A B)  □-∈-𝕎 P y  P y) 
    (x : 𝕎 A B)  P x
  ind-∈-𝕎 P h = ε-□-∈-𝕎 P h (ind-□-∈-𝕎 P h)

  compute-∈-𝕎 :
    (P : 𝕎 A B  UU l3) (h : (y : 𝕎 A B)  □-∈-𝕎 P y  P y) 
    (x : 𝕎 A B)  ind-∈-𝕎 P h x  h x  y e  ind-∈-𝕎 P h y)
  compute-∈-𝕎 P h x =
    ap (h x) (eq-htpy (eq-htpy  compute-□-∈-𝕎 P h x))

Strong induction for W-types

We define an operation □-𝕎 that acts on families over 𝕎 A B

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} (P : 𝕎 A B  UU l3)
  where

  □-𝕎 : 𝕎 A B  UU (l1  l2  l3)
  □-𝕎 x = (y : 𝕎 A B)  (y <-𝕎 x)  P y

The unit of □-𝕎 takes sections of P to sections of □-𝕎 P

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {P : 𝕎 A B  UU l3}
  where

  unit-□-𝕎 : ((x : 𝕎 A B)  P x)  ((x : 𝕎 A B)  □-𝕎 P x)
  unit-□-𝕎 f x y p = f y

The reflector (counit) of □-𝕎 is dual, with an extra hypothesis

module _
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} {P : 𝕎 A B  UU l3}
  where

  reflect-□-𝕎 :
    ((x : 𝕎 A B)  □-𝕎 P x  P x) 
    ((x : 𝕎 A B)  □-𝕎 P x)  ((x : 𝕎 A B)  P x)
  reflect-□-𝕎 h f x = h x (f x)

The strong induction principle for W-types

We first prove an intermediate induction principle with computation rule, where we obtain sections of □-𝕎 P.

  □-strong-ind-𝕎 :
    ((x : 𝕎 A B)  □-𝕎 P x  P x)  (x : 𝕎 A B)  □-𝕎 P x
  □-strong-ind-𝕎 h (tree-𝕎 x α) .(α b) (le-∈-𝕎 (pair b refl)) =
    h (α b) (□-strong-ind-𝕎 h (α b))
  □-strong-ind-𝕎 h (tree-𝕎 x α) y (propagate-le-𝕎 (pair b refl) K) =
    □-strong-ind-𝕎 h (α b) y K

  □-strong-compute-𝕎 :
    (h : (x : 𝕎 A B)  □-𝕎 P x  P x)
    (x : 𝕎 A B) (y : 𝕎 A B) (p : y <-𝕎 x) 
    □-strong-ind-𝕎 h x y p  h y (□-strong-ind-𝕎 h y)
  □-strong-compute-𝕎 h (tree-𝕎 x α) .(α b) (le-∈-𝕎 (pair b refl)) =
    refl
  □-strong-compute-𝕎 h (tree-𝕎 x α) y (propagate-le-𝕎 (pair b refl) K) =
    □-strong-compute-𝕎 h (α b) y K

Now we prove the actual induction principle with computation rule, where we obtain sections of P.

strong-ind-𝕎 :
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} (P : 𝕎 A B  UU l3) 
  ((x : 𝕎 A B)  □-𝕎 P x  P x)  (x : 𝕎 A B)  P x
strong-ind-𝕎 P h = reflect-□-𝕎 h (□-strong-ind-𝕎 h)

strong-compute-𝕎 :
  {l1 l2 l3 : Level} {A : UU l1} {B : A  UU l2} (P : 𝕎 A B  UU l3) 
  (h : (x : 𝕎 A B)  □-𝕎 P x  P x) (x : 𝕎 A B) 
  strong-ind-𝕎 P h x  h x (unit-□-𝕎 (strong-ind-𝕎 P h) x)
strong-compute-𝕎 P h x =
  ap (h x) (eq-htpy  y  eq-htpy  p  □-strong-compute-𝕎 h x y p)))

There are no infinitely descending sequences in a W-types

no-infinite-descent-𝕎 :
  {l1 l2 : Level} {A : UU l1} {B : A  UU l2} 
  (f :   𝕎 A B)  ¬ ((n : )  (f (succ-ℕ n) <-𝕎 (f n)))
no-infinite-descent-𝕎 {A = A} {B} f =
  strong-ind-𝕎
    ( λ x  (f :   𝕎 A B) (p : f zero-ℕ  x) 
            ¬ ((n : )  (f (succ-ℕ n)) <-𝕎 (f n)))
    ( λ x IH f p H 
      IH
        ( f 1)
        ( tr  t  (f 1) <-𝕎 t) p (H zero-ℕ))
        ( f  succ-ℕ)
        ( refl)
        ( λ n  H (succ-ℕ n)))
    ( f zero-ℕ)
    ( f)
    ( refl)

Recent changes