Dependent globular types
Content created by Egbert Rijke.
Created on 2024-11-17.
Last modified on 2024-12-03.
{-# OPTIONS --guardedness #-} module globular-types.dependent-globular-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import globular-types.globular-types open import globular-types.points-globular-types
Idea
Consider a globular type G
. A
dependent globular type¶ over G
consists of a type family H₀ : G₀ → 𝒰
, and for any two 0
-cells x y : G₀
in
G
a binary family of dependent globular types
H₁ : H₀ x → H₀ y → dependent-globular-type (G₁ x y).
Definitions
Dependent globular types
record Dependent-Globular-Type {l1 l2 : Level} (l3 l4 : Level) (G : Globular-Type l1 l2) : UU (l1 ⊔ l2 ⊔ lsuc l3 ⊔ lsuc l4) where coinductive field 0-cell-Dependent-Globular-Type : 0-cell-Globular-Type G → UU l3 1-cell-dependent-globular-type-Dependent-Globular-Type : {x y : 0-cell-Globular-Type G} → 0-cell-Dependent-Globular-Type x → 0-cell-Dependent-Globular-Type y → Dependent-Globular-Type l4 l4 (1-cell-globular-type-Globular-Type G x y) open Dependent-Globular-Type public module _ {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) where 1-cell-Dependent-Globular-Type : {x x' : 0-cell-Globular-Type G} → (y : 0-cell-Dependent-Globular-Type H x) (y' : 0-cell-Dependent-Globular-Type H x') → 1-cell-Globular-Type G x x' → UU l4 1-cell-Dependent-Globular-Type y y' = 0-cell-Dependent-Globular-Type ( 1-cell-dependent-globular-type-Dependent-Globular-Type H y y')
Evaluating dependent globular types at points
ev-point-Dependent-Globular-Type : {l1 l2 l3 l4 : Level} {G : Globular-Type l1 l2} (H : Dependent-Globular-Type l3 l4 G) (x : point-Globular-Type G) → Globular-Type l3 l4 0-cell-Globular-Type (ev-point-Dependent-Globular-Type H x) = 0-cell-Dependent-Globular-Type H (0-cell-point-Globular-Type x) 1-cell-globular-type-Globular-Type (ev-point-Dependent-Globular-Type H x) y y' = ev-point-Dependent-Globular-Type ( 1-cell-dependent-globular-type-Dependent-Globular-Type H y y') ( 1-cell-point-point-Globular-Type x)
See also
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-11-17. Egbert Rijke. chore: Moving files about globular types to a new namespace (#1223).