Fibered dependent type theories
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-04-14.
Last modified on 2023-09-11.
{-# OPTIONS --guardedness #-} module type-theories.fibered-dependent-type-theories where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import type-theories.dependent-type-theories
Bifibered systems
open dependent module fibered where record bifibered-system {l1 l2 l3 l4 l5 l6 : Level} (l7 l8 : Level) {A : system l1 l2} (B : fibered-system l3 l4 A) (C : fibered-system l5 l6 A) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5 ⊔ l6 ⊔ lsuc l7 ⊔ lsuc l8) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) (Z : fibered-system.type C X) → UU l7 element : {X : system.type A} {Y : fibered-system.type B X} {Z : fibered-system.type C X} {x : system.element A X} (W : type Y Z) (y : fibered-system.element B Y x) (z : fibered-system.element C Z x) → UU l8 slice : {X : system.type A} {Y : fibered-system.type B X} {Z : fibered-system.type C X} → type Y Z → bifibered-system l7 l8 ( fibered-system.slice B Y) ( fibered-system.slice C Z) total-fibered-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : fibered-system l5 l6 A} (D : bifibered-system l7 l8 B C) → fibered-system (l5 ⊔ l7) (l6 ⊔ l8) (total-system A B) fibered-system.type (total-fibered-system {C = C} D) X = Σ (fibered-system.type C (pr1 X)) (bifibered-system.type D (pr2 X)) fibered-system.element (total-fibered-system {C = C} D) {pair X Y} (pair Z W) (pair x y) = Σ (fibered-system.element C Z x) (bifibered-system.element D W y) fibered-system.slice (total-fibered-system D) {pair X Y} (pair Z W) = total-fibered-system (bifibered-system.slice D W) record section-fibered-system {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : fibered-system l5 l6 A} (f : section-system C) (D : bifibered-system l7 l8 B C) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l7 ⊔ l8) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → bifibered-system.type D Y (section-system.type f X) element : {X : system.type A} {Y : fibered-system.type B X} → {x : system.element A X} (y : fibered-system.element B Y x) → bifibered-system.element D ( type Y) ( y) ( section-system.element f x) slice : {X : system.type A} (Y : fibered-system.type B X) → section-fibered-system ( section-system.slice f X) ( bifibered-system.slice D (type Y)) total-section-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : fibered-system l5 l6 A} {D : bifibered-system l7 l8 B C} {f : section-system C} (g : section-fibered-system f D) → section-system (total-fibered-system D) section-system.type (total-section-system {f = f} g) (pair X Y) = pair (section-system.type f X) (section-fibered-system.type g Y) section-system.element (total-section-system {f = f} g) {pair X Y} (pair x y) = pair (section-system.element f x) (section-fibered-system.element g y) section-system.slice (total-section-system g) (pair X Y) = total-section-system (section-fibered-system.slice g Y)
Homotopies of sections of fibered systems
double-tr : {l1 l2 l3 l4 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} (D : (x : A) → B x → C x → UU l4) {x y : A} (p : Id x y) {u : B x} {u' : B y} (q : Id (tr B p u) u') {v : C x} {v' : C y} (r : Id (tr C p v) v') → D x u v → D y u' v' double-tr D refl refl refl d = d tr-bifibered-system-slice : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : fibered-system l5 l6 A} (D : bifibered-system l7 l8 B C) {X : system.type A} (Y : fibered-system.type B X) {Z Z' : fibered-system.type C X} {d : bifibered-system.type D Y Z} {d' : bifibered-system.type D Y Z'} (p : Id Z Z') (q : Id (tr (bifibered-system.type D Y) p d) d') → Id ( tr ( bifibered-system l7 l8 (fibered-system.slice B Y)) ( ap (fibered-system.slice C) p) ( bifibered-system.slice D d)) ( bifibered-system.slice D (tr (bifibered-system.type D Y) p d)) tr-bifibered-system-slice D Y refl refl = refl Eq-bifibered-system' : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C C' : fibered-system l5 l6 A} (D : bifibered-system l7 l8 B C) (D' : bifibered-system l7 l8 B C') (α : Id C C') (β : Id (tr (bifibered-system l7 l8 B) α D) D') (f : section-system C) (f' : section-system C') (g : section-fibered-system f D) (g' : section-fibered-system f' D') → bifibered-system l7 l8 B (Eq-fibered-system' α f f') bifibered-system.type ( Eq-bifibered-system' D .D refl refl f f' g g') {X} Y p = Id ( tr (bifibered-system.type D Y) p (section-fibered-system.type g Y)) ( section-fibered-system.type g' Y) bifibered-system.element ( Eq-bifibered-system' {A = A} {C = C} D .D refl refl f f' g g') {X} {Y} {p} {x} α y q = Id ( double-tr ( λ Z u → bifibered-system.element D {Z = Z} u y) ( p) ( α) ( q) ( section-fibered-system.element g y)) ( section-fibered-system.element g' y) bifibered-system.slice ( Eq-bifibered-system' {C = C} D .D refl refl f f' g g') {X} {Y} {α} β = Eq-bifibered-system' ( bifibered-system.slice D (section-fibered-system.type g Y)) ( bifibered-system.slice D (section-fibered-system.type g' Y)) ( ap (fibered-system.slice C) α) ( tr-bifibered-system-slice D Y α β ∙ ap (bifibered-system.slice D) β) ( section-system.slice f X) ( section-system.slice f' X) ( section-fibered-system.slice g Y) ( section-fibered-system.slice g' Y) htpy-section-fibered-system' : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C C' : fibered-system l5 l6 A} {D : bifibered-system l7 l8 B C} {D' : bifibered-system l7 l8 B C'} {f : section-system C} {f' : section-system C'} {α : Id C C'} (β : Id (tr (bifibered-system l7 l8 B) α D) D') (H : htpy-section-system' α f f') (g : section-fibered-system f D) (h : section-fibered-system f' D') → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l7 ⊔ l8) htpy-section-fibered-system' {D = D} {D'} {f} {f'} {α} β H g h = section-fibered-system H (Eq-bifibered-system' D D' α β f f' g h) htpy-section-fibered-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : fibered-system l5 l6 A} {D : bifibered-system l7 l8 B C} {f f' : section-system C} (H : htpy-section-system f f') (g : section-fibered-system f D) (h : section-fibered-system f' D) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l7 ⊔ l8) htpy-section-fibered-system H g h = htpy-section-fibered-system' {α = refl} refl H g h
Morphisms of fibered systems
constant-bifibered-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} (B : fibered-system l3 l4 A) {C : system l5 l6} (D : fibered-system l7 l8 C) → bifibered-system l7 l8 B (constant-fibered-system A C) bifibered-system.type (constant-bifibered-system B D) Y Z = fibered-system.type D Z bifibered-system.element (constant-bifibered-system B D) {Z = Z} W y z = fibered-system.element D W z bifibered-system.slice (constant-bifibered-system B D) {X = X} {Y} {Z} W = constant-bifibered-system ( fibered-system.slice B Y) ( fibered-system.slice D W) hom-fibered-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {A' : system l3 l4} (f : hom-system A A') (B : fibered-system l5 l6 A) (B' : fibered-system l7 l8 A') → UU (l1 ⊔ l2 ⊔ l5 ⊔ l6 ⊔ l7 ⊔ l8) hom-fibered-system f B B' = section-fibered-system f (constant-bifibered-system B B') id-hom-fibered-system : {l1 l2 l3 l4 : Level} {A : system l1 l2} (B : fibered-system l3 l4 A) → hom-fibered-system (id-hom-system A) B B section-fibered-system.type (id-hom-fibered-system B) = id section-fibered-system.element (id-hom-fibered-system B) = id section-fibered-system.slice (id-hom-fibered-system B) Y = id-hom-fibered-system (fibered-system.slice B Y) comp-hom-fibered-system : {l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 : Level} {A : system l1 l2} {B : system l3 l4} {C : system l5 l6} {g : hom-system B C} {f : hom-system A B} {D : fibered-system l7 l8 A} {E : fibered-system l9 l10 B} {F : fibered-system l11 l12 C} (k : hom-fibered-system g E F) (h : hom-fibered-system f D E) → hom-fibered-system (comp-hom-system g f) D F section-fibered-system.type (comp-hom-fibered-system k h) Y = section-fibered-system.type k ( section-fibered-system.type h Y) section-fibered-system.element (comp-hom-fibered-system k h) y = section-fibered-system.element k ( section-fibered-system.element h y) section-fibered-system.slice (comp-hom-fibered-system k h) Y = comp-hom-fibered-system ( section-fibered-system.slice k (section-fibered-system.type h Y)) ( section-fibered-system.slice h Y) htpy-hom-fibered-system : {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : system l5 l6} {D : fibered-system l7 l8 C} {f f' : hom-system A C} (H : htpy-hom-system f f') (g : hom-fibered-system f B D) (g' : hom-fibered-system f' B D) → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l7 ⊔ l8) htpy-hom-fibered-system H g g' = htpy-section-fibered-system H g g'
Weakening structure on fibered systems
record fibered-weakening {l1 l2 l3 l4 : Level} {A : system l1 l2} (B : fibered-system l3 l4 A) (W : weakening A) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → hom-fibered-system ( weakening.type W X) ( B) ( fibered-system.slice B Y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-weakening ( fibered-system.slice B Y) ( weakening.slice W X) record preserves-fibered-weakening {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : system l5 l6} {D : fibered-system l7 l8 C} {WA : weakening A} {WC : weakening C} (WB : fibered-weakening B WA) (WD : fibered-weakening D WC) {f : hom-system A C} (Wf : preserves-weakening WA WC f) (g : hom-fibered-system f B D) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l7 ⊔ l8) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → htpy-hom-fibered-system ( preserves-weakening.type Wf X) ( comp-hom-fibered-system ( section-fibered-system.slice g Y) ( fibered-weakening.type WB Y)) ( comp-hom-fibered-system ( fibered-weakening.type WD ( section-fibered-system.type g Y)) ( g)) slice : {X : system.type A} (Y : fibered-system.type B X) → preserves-fibered-weakening ( fibered-weakening.slice WB Y) ( fibered-weakening.slice WD (section-fibered-system.type g Y)) ( preserves-weakening.slice Wf X) ( section-fibered-system.slice g Y)
Substitution structures on fibered systems
record fibered-substitution {l1 l2 l3 l4 : Level} {A : system l1 l2} (B : fibered-system l3 l4 A) (S : substitution A) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} {Y : fibered-system.type B X} {x : system.element A X} (y : fibered-system.element B Y x) → hom-fibered-system ( substitution.type S x) ( fibered-system.slice B Y) ( B) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-substitution ( fibered-system.slice B Y) ( substitution.slice S X) record preserves-fibered-substitution {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : system l5 l6} {D : fibered-system l7 l8 C} {SA : substitution A} {SC : substitution C} (SB : fibered-substitution B SA) (SD : fibered-substitution D SC) {f : hom-system A C} (Sf : preserves-substitution SA SC f) (g : hom-fibered-system f B D) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l7 ⊔ l8) where coinductive field type : {X : system.type A} {Y : fibered-system.type B X} {x : system.element A X} (y : fibered-system.element B Y x) → htpy-hom-fibered-system ( preserves-substitution.type Sf x) ( comp-hom-fibered-system ( g) ( fibered-substitution.type SB y)) ( comp-hom-fibered-system ( fibered-substitution.type SD ( section-fibered-system.element g y)) ( section-fibered-system.slice g Y)) slice : {X : system.type A} (Y : fibered-system.type B X) → preserves-fibered-substitution ( fibered-substitution.slice SB Y) ( fibered-substitution.slice SD ( section-fibered-system.type g Y)) ( preserves-substitution.slice Sf X) ( section-fibered-system.slice g Y)
Generic element structures on fibered systems equipped with a weakening structure
We define what it means for a fibered system equipped with fibered weakening structure over a system equipped with weakening structure and the structure of generic elements to be equipped with generic elements.
record fibered-generic-element {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} (W : fibered-weakening B WA) (δ : generic-element WA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → fibered-system.element ( fibered-system.slice B Y) ( section-fibered-system.type (fibered-weakening.type W Y) Y) ( generic-element.type δ X) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-generic-element ( fibered-weakening.slice W Y) ( generic-element.slice δ X) record preserves-fibered-generic-element {l1 l2 l3 l4 l5 l6 l7 l8 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {C : system l5 l6} {D : fibered-system l7 l8 C} {WA : weakening A} {WC : weakening C} {WB : fibered-weakening B WA} {WD : fibered-weakening D WC} {δA : generic-element WA} {δC : generic-element WC} (δB : fibered-generic-element WB δA) (δD : fibered-generic-element WD δC) {f : hom-system A C} {Wf : preserves-weakening WA WC f} (δf : preserves-generic-element δA δC Wf) {g : hom-fibered-system f B D} (Wg : preserves-fibered-weakening WB WD Wf g) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l7 ⊔ l8) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → Id ( double-tr ( λ Z u v → fibered-system.element ( fibered-system.slice D ( section-fibered-system.type g Y)) {Z} u v) ( section-system.type (preserves-weakening.type Wf X) X) ( section-fibered-system.type ( preserves-fibered-weakening.type Wg Y) Y) ( preserves-generic-element.type δf X) ( section-fibered-system.element ( section-fibered-system.slice g Y) ( fibered-generic-element.type δB Y))) ( fibered-generic-element.type δD ( section-fibered-system.type g Y)) slice : {X : system.type A} (Y : fibered-system.type B X) → preserves-fibered-generic-element ( fibered-generic-element.slice δB Y) ( fibered-generic-element.slice δD ( section-fibered-system.type g Y)) ( preserves-generic-element.slice δf X) ( preserves-fibered-weakening.slice Wg Y)
Fibered dependent type theories
record fibered-weakening-preserves-weakening {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} (WWA : weakening-preserves-weakening WA) (W : fibered-weakening B WA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → preserves-fibered-weakening ( W) ( fibered-weakening.slice W Y) ( weakening-preserves-weakening.type WWA X) ( fibered-weakening.type W Y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-weakening-preserves-weakening ( weakening-preserves-weakening.slice WWA X) ( fibered-weakening.slice W Y) record fibered-substitution-preserves-substitution {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {SA : substitution A} (SSA : substitution-preserves-substitution SA) (S : fibered-substitution B SA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} {Y : fibered-system.type B X} {x : system.element A X} (y : fibered-system.element B Y x) → preserves-fibered-substitution ( fibered-substitution.slice S Y) ( S) ( substitution-preserves-substitution.type SSA x) ( fibered-substitution.type S y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-substitution-preserves-substitution ( substitution-preserves-substitution.slice SSA X) ( fibered-substitution.slice S Y) record fibered-weakening-preserves-substitution {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {SA : substitution A} (WSA : weakening-preserves-substitution SA WA) (W : fibered-weakening B WA) (S : fibered-substitution B SA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → preserves-fibered-substitution ( S) ( fibered-substitution.slice S Y) ( weakening-preserves-substitution.type WSA X) ( fibered-weakening.type W Y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-weakening-preserves-substitution ( weakening-preserves-substitution.slice WSA X) ( fibered-weakening.slice W Y) ( fibered-substitution.slice S Y) record fibered-substitution-preserves-weakening {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {SA : substitution A} (SWA : substitution-preserves-weakening WA SA) (W : fibered-weakening B WA) (S : fibered-substitution B SA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} {Y : fibered-system.type B X} {x : system.element A X} (y : fibered-system.element B Y x) → preserves-fibered-weakening ( fibered-weakening.slice W Y) ( W) ( substitution-preserves-weakening.type SWA x) ( fibered-substitution.type S y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-substitution-preserves-weakening ( substitution-preserves-weakening.slice SWA X) ( fibered-weakening.slice W Y) ( fibered-substitution.slice S Y) record fibered-weakening-preserves-generic-element {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {δA : generic-element WA} {WWA : weakening-preserves-weakening WA} (WδA : weakening-preserves-generic-element WA WWA δA) {W : fibered-weakening B WA} (WWB : fibered-weakening-preserves-weakening WWA W) (δ : fibered-generic-element W δA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → preserves-fibered-generic-element ( δ) ( fibered-generic-element.slice δ Y) ( weakening-preserves-generic-element.type WδA X) ( fibered-weakening-preserves-weakening.type WWB Y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-weakening-preserves-generic-element ( weakening-preserves-generic-element.slice WδA X) ( fibered-weakening-preserves-weakening.slice WWB Y) ( fibered-generic-element.slice δ Y) record fibered-substitution-preserves-generic-element {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {SA : substitution A} {δA : generic-element WA} {SWA : substitution-preserves-weakening WA SA} (SδA : substitution-preserves-generic-element WA δA SA SWA) {WB : fibered-weakening B WA} {SB : fibered-substitution B SA} (SWB : fibered-substitution-preserves-weakening SWA WB SB) (δB : fibered-generic-element WB δA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} {Y : fibered-system.type B X} {x : system.element A X} (y : fibered-system.element B Y x) → preserves-fibered-generic-element ( fibered-generic-element.slice δB Y) ( δB) ( substitution-preserves-generic-element.type SδA x) ( fibered-substitution-preserves-weakening.type SWB y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-substitution-preserves-generic-element ( substitution-preserves-generic-element.slice SδA X) ( fibered-substitution-preserves-weakening.slice SWB Y) ( fibered-generic-element.slice δB Y) record fibered-substitution-cancels-weakening {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {SA : substitution A} (S!WA : substitution-cancels-weakening WA SA) (WB : fibered-weakening B WA) (SB : fibered-substitution B SA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} {Y : fibered-system.type B X} {x : system.element A X} (y : fibered-system.element B Y x) → htpy-hom-fibered-system ( substitution-cancels-weakening.type S!WA x) ( comp-hom-fibered-system ( fibered-substitution.type SB y) ( fibered-weakening.type WB Y)) ( id-hom-fibered-system B) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-substitution-cancels-weakening ( substitution-cancels-weakening.slice S!WA X) ( fibered-weakening.slice WB Y) ( fibered-substitution.slice SB Y) record fibered-generic-element-is-identity {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {SA : substitution A} {δA : generic-element WA} (S!WA : substitution-cancels-weakening WA SA) (δidA : generic-element-is-identity WA SA δA S!WA) {WB : fibered-weakening B WA} {SB : fibered-substitution B SA} (δB : fibered-generic-element WB δA) (S!WB : fibered-substitution-cancels-weakening S!WA WB SB) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} {Y : fibered-system.type B X} {x : system.element A X} (y : fibered-system.element B Y x) → Id ( double-tr ( λ α β γ → fibered-system.element B {X = α} β γ) ( section-system.type ( substitution-cancels-weakening.type S!WA x) ( X)) ( section-fibered-system.type ( fibered-substitution-cancels-weakening.type S!WB y) ( Y)) ( generic-element-is-identity.type δidA x) ( section-fibered-system.element ( fibered-substitution.type SB y) ( fibered-generic-element.type δB Y))) ( y) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-generic-element-is-identity ( substitution-cancels-weakening.slice S!WA X) ( generic-element-is-identity.slice δidA X) ( fibered-generic-element.slice δB Y) ( fibered-substitution-cancels-weakening.slice S!WB Y) record fibered-substitution-by-generic-element {l1 l2 l3 l4 : Level} {A : system l1 l2} {B : fibered-system l3 l4 A} {WA : weakening A} {SA : substitution A} {δA : generic-element WA} (Sδ! : substitution-by-generic-element WA SA δA) {WB : fibered-weakening B WA} (SB : fibered-substitution B SA) (δB : fibered-generic-element WB δA) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : {X : system.type A} (Y : fibered-system.type B X) → htpy-hom-fibered-system ( substitution-by-generic-element.type Sδ! X) ( comp-hom-fibered-system ( fibered-substitution.type ( fibered-substitution.slice SB Y) ( fibered-generic-element.type δB Y)) ( fibered-weakening.type ( fibered-weakening.slice WB Y) ( section-fibered-system.type ( fibered-weakening.type WB Y) ( Y)))) ( id-hom-fibered-system (fibered-system.slice B Y)) slice : {X : system.type A} (Y : fibered-system.type B X) → fibered-substitution-by-generic-element ( substitution-by-generic-element.slice Sδ! X) ( fibered-substitution.slice SB Y) ( fibered-generic-element.slice δB Y)
Fibered dependent type theories
record fibered-type-theory {l1 l2 : Level} (l3 l4 : Level) (A : type-theory l1 l2) : UU (l1 ⊔ l2 ⊔ lsuc l3 ⊔ lsuc l4) where coinductive field sys : fibered-system l3 l4 (type-theory.sys A) W : fibered-weakening sys (type-theory.W A) S : fibered-substitution sys (type-theory.S A) δ : fibered-generic-element W (type-theory.δ A) WW : fibered-weakening-preserves-weakening (type-theory.WW A) W SS : fibered-substitution-preserves-substitution (type-theory.SS A) S WS : fibered-weakening-preserves-substitution (type-theory.WS A) W S SW : fibered-substitution-preserves-weakening (type-theory.SW A) W S Wδ : fibered-weakening-preserves-generic-element (type-theory.Wδ A) WW δ Sδ : fibered-substitution-preserves-generic-element (type-theory.Sδ A) SW δ S!W : fibered-substitution-cancels-weakening (type-theory.S!W A) W S δid : fibered-generic-element-is-identity (type-theory.S!W A) (type-theory.δid A) δ S!W Sδ! : fibered-substitution-by-generic-element (type-theory.Sδ! A) S δ {- total-type-theory : {l1 l2 l3 l4 : Level} {A : type-theory l1 l2} (B : fibered-type-theory l3 l4 A) → type-theory (l1 ⊔ l3) (l2 ⊔ l4) type-theory.sys (total-type-theory {A = A} B) = total-system (type-theory.sys A) (fibered-type-theory.sys B) type-theory.W (total-type-theory {A = A} B) = {!!} type-theory.S (total-type-theory {A = A} B) = {!!} type-theory.δ (total-type-theory {A = A} B) = {!!} type-theory.WW (total-type-theory {A = A} B) = {!!} type-theory.SS (total-type-theory {A = A} B) = {!!} type-theory.WS (total-type-theory {A = A} B) = {!!} type-theory.SW (total-type-theory {A = A} B) = {!!} type-theory.Wδ (total-type-theory {A = A} B) = {!!} type-theory.Sδ (total-type-theory {A = A} B) = {!!} type-theory.S!W (total-type-theory {A = A} B) = {!!} type-theory.δid (total-type-theory {A = A} B) = {!!} type-theory.Sδ! (total-type-theory {A = A} B) = {!!} -} {- slice-fibered-type-theory {l1 l2 l3 l4 : Level} {A : type-theory l1 l2} -}
Subtype theories
{- record is-subtype-theory {l1 l2 l3 l4 : Level} {A : type-theory l1 l2} (B : fibered-type-theory l3 l4 A) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where coinductive field type : ( (X : system.type (type-theory.sys A)) → is-prop (fibered-system.type (fibered-type-theory.sys B) X)) × ( (X : system.type (type-theory.sys A)) ( Y : fibered-system.type (fibered-type-theory.sys B) X) ( x : system.element (type-theory.sys A) X) → is-prop (fibered-system.element (fibered-type-theory.sys B) Y x)) slice : (X : system.type (type-theory.sys A)) → is-subtype-theory (slice-fibered-type-theory B X) -}
Recent changes
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-07. Fredrik Bakke. Move public imports before “Imports” block (#642).
- 2023-05-28. Fredrik Bakke. Enforce even indentation and automate some conventions (#635).