Function polynomial endofunctors
Content created by Fredrik Bakke.
Created on 2026-02-05.
Last modified on 2026-02-05.
module trees.function-polynomial-endofunctors where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.type-theoretic-principle-of-choice open import foundation.universal-property-dependent-pair-types open import foundation.universe-levels open import trees.polynomial-endofunctors
Idea
Given a polynomial endofunctor 𝑃 and a
type I then there is a
function polynomial endofunctor¶
𝑃ᴵ given on shapes by (𝑃ᴵ)₀ := I → 𝑃₀ and on positions by
(𝑃ᴵ)₁(f) := Σ (i : I), 𝑃₁(f(i)). This polynomial endofunctor satisfies the
equivalence
𝑃ᴵ(X) ≃ (I → 𝑃(X)).
Definition
module _ {l1 l2 l3 : Level} (I : UU l1) (P@(A , B) : polynomial-endofunctor l2 l3) where shape-function-polynomial-endofunctor : UU (l1 ⊔ l2) shape-function-polynomial-endofunctor = I → A position-function-polynomial-endofunctor : shape-function-polynomial-endofunctor → UU (l1 ⊔ l3) position-function-polynomial-endofunctor f = Σ I (B ∘ f) function-polynomial-endofunctor : polynomial-endofunctor (l1 ⊔ l2) (l1 ⊔ l3) function-polynomial-endofunctor = ( shape-function-polynomial-endofunctor , position-function-polynomial-endofunctor) compute-type-function-polynomial-endofunctor : {l : Level} {X : UU l} → type-polynomial-endofunctor function-polynomial-endofunctor X ≃ (I → type-polynomial-endofunctor P X) compute-type-function-polynomial-endofunctor = inv-distributive-Π-Σ ∘e equiv-tot (λ f → equiv-ev-pair)
Recent changes
- 2026-02-05. Fredrik Bakke. Some constructions on polynomial endofunctors (#1723).