The precategory of group actions
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-17.
Last modified on 2024-03-11.
module group-theory.precategory-of-group-actions where
Imports
open import category-theory.large-precategories open import category-theory.precategories open import foundation.universe-levels open import group-theory.group-actions open import group-theory.groups open import group-theory.homomorphisms-group-actions
Idea
The large precategory of group actions consists of group actions and morphisms of group actions between them.
Definitions
The large precategory of G
-sets
module _ {l1 : Level} (G : Group l1) where action-Group-Large-Precategory : Large-Precategory (λ l2 → l1 ⊔ lsuc l2) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) action-Group-Large-Precategory = make-Large-Precategory ( action-Group G) ( hom-set-action-Group G) ( λ {l1} {l2} {l3} {X} {Y} {Z} → comp-hom-action-Group G X Y Z) ( λ {l1} {X} → id-hom-action-Group G X) ( λ {l1} {l2} {l3} {l4} {X} {Y} {Z} {W} → associative-comp-hom-action-Group G X Y Z W) ( λ {l1} {l2} {X} {Y} → left-unit-law-comp-hom-action-Group G X Y) ( λ {l1} {l2} {X} {Y} → right-unit-law-comp-hom-action-Group G X Y)
The small precategory of G
-sets
module _ {l1 : Level} (G : Group l1) where action-Group-Precategory : (l2 : Level) → Precategory (l1 ⊔ lsuc l2) (l1 ⊔ l2) action-Group-Precategory = precategory-Large-Precategory (action-Group-Large-Precategory G)
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-24. Fredrik Bakke. The orbit category of a group (#935).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).