k
-Equivalences
Content created by Fredrik Bakke, Egbert Rijke, Daniel Gratzer, Elisabeth Stenholm and Tom de Jong.
Created on 2023-04-26.
Last modified on 2025-01-07.
module foundation.truncation-equivalences where
Imports
open import foundation.commuting-squares-of-maps open import foundation.connected-maps open import foundation.connected-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.functoriality-truncation open import foundation.identity-types open import foundation.precomposition-functions-into-subuniverses open import foundation.propositional-truncations open import foundation.truncations open import foundation.type-arithmetic-dependent-pair-types open import foundation.universal-property-dependent-pair-types open import foundation.universal-property-equivalences open import foundation.universal-property-truncation open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.equivalences open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.precomposition-functions open import foundation-core.sections open import foundation-core.transport-along-identifications open import foundation-core.truncated-types open import foundation-core.truncation-levels
Idea
A map f : A → B
is said to be a
k
-equivalence¶
if the map map-trunc k f : trunc k A → trunc k B
is an
equivalence.
Definition
is-truncation-equivalence : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} → (A → B) → UU (l1 ⊔ l2) is-truncation-equivalence k f = is-equiv (map-trunc k f) truncation-equivalence : {l1 l2 : Level} (k : 𝕋) → UU l1 → UU l2 → UU (l1 ⊔ l2) truncation-equivalence k A B = Σ (A → B) (is-truncation-equivalence k) module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : truncation-equivalence k A B) where map-truncation-equivalence : A → B map-truncation-equivalence = pr1 f is-truncation-equivalence-truncation-equivalence : is-truncation-equivalence k map-truncation-equivalence is-truncation-equivalence-truncation-equivalence = pr2 f
Properties
A map f : A → B
is a k
-equivalence if and only if - ∘ f : (B → X) → (A → X)
is an equivalence for every k
-truncated type X
is-equiv-precomp-is-truncation-equivalence : {l1 l2 l3 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → is-truncation-equivalence k f → (X : Truncated-Type l3 k) → is-equiv (precomp f (type-Truncated-Type X)) is-equiv-precomp-is-truncation-equivalence k f H X = is-equiv-bottom-is-equiv-top-square ( precomp unit-trunc (type-Truncated-Type X)) ( precomp unit-trunc (type-Truncated-Type X)) ( precomp (map-trunc k f) (type-Truncated-Type X)) ( precomp f (type-Truncated-Type X)) ( precomp-coherence-square-maps ( unit-trunc) ( f) ( map-trunc k f) ( unit-trunc) ( inv-htpy (coherence-square-map-trunc k f)) ( type-Truncated-Type X)) ( is-truncation-trunc X) ( is-truncation-trunc X) ( is-equiv-precomp-is-equiv (map-trunc k f) H (type-Truncated-Type X)) is-truncation-equivalence-is-equiv-precomp : {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) → ( (l : Level) (X : Truncated-Type l k) → is-equiv (precomp f (type-Truncated-Type X))) → is-truncation-equivalence k f is-truncation-equivalence-is-equiv-precomp k {A} {B} f H = is-equiv-is-equiv-precomp-Truncated-Type k ( trunc k A) ( trunc k B) ( map-trunc k f) ( λ X → is-equiv-top-is-equiv-bottom-square ( precomp unit-trunc (type-Truncated-Type X)) ( precomp unit-trunc (type-Truncated-Type X)) ( precomp (map-trunc k f) (type-Truncated-Type X)) ( precomp f (type-Truncated-Type X)) ( precomp-coherence-square-maps ( unit-trunc) ( f) ( map-trunc k f) ( unit-trunc) ( inv-htpy (coherence-square-map-trunc k f)) ( type-Truncated-Type X)) ( is-truncation-trunc X) ( is-truncation-trunc X) ( H _ X))
An equivalence is a k
-equivalence for all k
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A → B) where is-truncation-equivalence-is-equiv : is-equiv f → is-truncation-equivalence k f is-truncation-equivalence-is-equiv e = is-equiv-map-equiv-trunc k (f , e)
Every k
-connected map is a k
-equivalence
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A → B) where is-truncation-equivalence-is-connected-map : is-connected-map k f → is-truncation-equivalence k f is-truncation-equivalence-is-connected-map c = is-truncation-equivalence-is-equiv-precomp k f ( λ l X → dependent-universal-property-is-connected-map k c (λ _ → X))
The k
-equivalences are closed under composition
module _ {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} {C : UU l3} where is-truncation-equivalence-comp : (g : B → C) (f : A → B) → is-truncation-equivalence k f → is-truncation-equivalence k g → is-truncation-equivalence k (g ∘ f) is-truncation-equivalence-comp g f ef eg = is-equiv-htpy ( map-trunc k g ∘ map-trunc k f) ( preserves-comp-map-trunc k g f) ( is-equiv-comp (map-trunc k g) (map-trunc k f) ef eg) truncation-equivalence-comp : truncation-equivalence k B C → truncation-equivalence k A B → truncation-equivalence k A C pr1 (truncation-equivalence-comp g f) = map-truncation-equivalence k g ∘ map-truncation-equivalence k f pr2 (truncation-equivalence-comp g f) = is-truncation-equivalence-comp ( map-truncation-equivalence k g) ( map-truncation-equivalence k f) ( is-truncation-equivalence-truncation-equivalence k f) ( is-truncation-equivalence-truncation-equivalence k g)
The class of k
-equivalences has the 3-for-2 property
module _ {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} {C : UU l3} (g : B → C) (f : A → B) (e : is-truncation-equivalence k (g ∘ f)) where is-truncation-equivalence-left-factor : is-truncation-equivalence k f → is-truncation-equivalence k g is-truncation-equivalence-left-factor ef = is-equiv-left-factor ( map-trunc k g) ( map-trunc k f) ( is-equiv-htpy ( map-trunc k (g ∘ f)) ( inv-htpy (preserves-comp-map-trunc k g f)) e) ( ef) is-truncation-equivalence-right-factor : is-truncation-equivalence k g → is-truncation-equivalence k f is-truncation-equivalence-right-factor eg = is-equiv-right-factor ( map-trunc k g) ( map-trunc k f) ( eg) ( is-equiv-htpy ( map-trunc k (g ∘ f)) ( inv-htpy (preserves-comp-map-trunc k g f)) ( e))
Composing k
-equivalences with equivalences
module _ {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} {C : UU l3} where is-truncation-equivalence-is-equiv-is-truncation-equivalence : (g : B → C) (f : A → B) → is-truncation-equivalence k g → is-equiv f → is-truncation-equivalence k (g ∘ f) is-truncation-equivalence-is-equiv-is-truncation-equivalence g f eg ef = is-truncation-equivalence-comp g f ( is-truncation-equivalence-is-equiv f ef) ( eg) is-truncation-equivalence-is-truncation-equivalence-is-equiv : (g : B → C) (f : A → B) → is-equiv g → is-truncation-equivalence k f → is-truncation-equivalence k (g ∘ f) is-truncation-equivalence-is-truncation-equivalence-is-equiv g f eg ef = is-truncation-equivalence-comp g f ( ef) ( is-truncation-equivalence-is-equiv g eg) is-truncation-equivalence-equiv-is-truncation-equivalence : (g : B → C) (f : A ≃ B) → is-truncation-equivalence k g → is-truncation-equivalence k (g ∘ map-equiv f) is-truncation-equivalence-equiv-is-truncation-equivalence g f eg = is-truncation-equivalence-is-equiv-is-truncation-equivalence g ( map-equiv f) ( eg) ( is-equiv-map-equiv f) is-truncation-equivalence-is-truncation-equivalence-equiv : (g : B ≃ C) (f : A → B) → is-truncation-equivalence k f → is-truncation-equivalence k (map-equiv g ∘ f) is-truncation-equivalence-is-truncation-equivalence-equiv g f ef = is-truncation-equivalence-is-truncation-equivalence-is-equiv ( map-equiv g) ( f) ( is-equiv-map-equiv g) ( ef)
The map on dependent pair types induced by the unit of the (k+1)
-truncation is a k
-equivalence
This is an instance of Lemma 2.27 in [CORS20] listed below.
module _ {l1 l2 : Level} {k : 𝕋} {X : UU l1} (P : (type-trunc (succ-𝕋 k) X) → UU l2) where map-Σ-map-base-unit-trunc : Σ X (P ∘ unit-trunc) → Σ (type-trunc (succ-𝕋 k) X) P map-Σ-map-base-unit-trunc = map-Σ-map-base unit-trunc P is-truncation-equivalence-map-Σ-map-base-unit-trunc : is-truncation-equivalence k map-Σ-map-base-unit-trunc is-truncation-equivalence-map-Σ-map-base-unit-trunc = is-truncation-equivalence-is-equiv-precomp k ( map-Σ-map-base-unit-trunc) ( λ l X → is-equiv-equiv ( equiv-ev-pair) ( equiv-ev-pair) ( refl-htpy) ( dependent-universal-property-trunc ( λ t → ( ( P t → type-Truncated-Type X) , ( is-trunc-succ-is-trunc k ( is-trunc-function-type k ( is-trunc-type-Truncated-Type X)))))))
There is an k
-equivalence between the fiber of a map and the fiber of its (k+1)
-truncation
This is an instance of Corollary 2.29 in [CORS20].
We consider the following composition of maps
fiber f b = Σ A (λ a → f a = b)
→ Σ A (λ a → ║f a = b║)
≃ Σ A (λ a → |f a| = |b|)
≃ Σ A (λ a → ║f║ |a| = |b|)
→ Σ ║A║ (λ t → ║f║ t = |b|)
= fiber ║f║ |b|
where the first and last maps are k
-equivalences.
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A → B) (b : B) where fiber-map-trunc-fiber : fiber f b → fiber (map-trunc (succ-𝕋 k) f) (unit-trunc b) fiber-map-trunc-fiber = ( map-Σ-map-base-unit-trunc ( λ t → map-trunc (succ-𝕋 k) f t = unit-trunc b)) ∘ ( tot ( λ a → ( concat (naturality-unit-trunc (succ-𝕋 k) f a) (unit-trunc b)) ∘ ( map-effectiveness-trunc k (f a) b) ∘ ( unit-trunc))) is-truncation-equivalence-fiber-map-trunc-fiber : is-truncation-equivalence k fiber-map-trunc-fiber is-truncation-equivalence-fiber-map-trunc-fiber = is-truncation-equivalence-comp ( map-Σ-map-base-unit-trunc ( λ t → map-trunc (succ-𝕋 k) f t = unit-trunc b)) ( tot ( λ a → ( concat (naturality-unit-trunc (succ-𝕋 k) f a) (unit-trunc b)) ∘ ( map-effectiveness-trunc k (f a) b) ∘ ( unit-trunc))) ( is-truncation-equivalence-is-truncation-equivalence-equiv ( equiv-tot ( λ a → ( equiv-concat ( naturality-unit-trunc (succ-𝕋 k) f a) ( unit-trunc b)) ∘e ( effectiveness-trunc k (f a) b))) ( λ (a , p) → a , unit-trunc p) ( is-equiv-map-equiv (equiv-trunc-Σ k))) ( is-truncation-equivalence-map-Σ-map-base-unit-trunc ( λ t → map-trunc (succ-𝕋 k) f t = unit-trunc b)) truncation-equivalence-fiber-map-trunc-fiber : truncation-equivalence k ( fiber f b) ( fiber (map-trunc (succ-𝕋 k) f) (unit-trunc b)) pr1 truncation-equivalence-fiber-map-trunc-fiber = fiber-map-trunc-fiber pr2 truncation-equivalence-fiber-map-trunc-fiber = is-truncation-equivalence-fiber-map-trunc-fiber
Being k
-connected is invariant under k
-equivalences
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} where is-connected-is-truncation-equivalence-is-connected : (f : A → B) → is-truncation-equivalence k f → is-connected k B → is-connected k A is-connected-is-truncation-equivalence-is-connected f e = is-contr-equiv (type-trunc k B) (map-trunc k f , e) is-connected-truncation-equivalence-is-connected : truncation-equivalence k A B → is-connected k B → is-connected k A is-connected-truncation-equivalence-is-connected f = is-connected-is-truncation-equivalence-is-connected ( map-truncation-equivalence k f) ( is-truncation-equivalence-truncation-equivalence k f)
Every (k+1)
-equivalence is k
-connected
This is an instance of Proposition 2.30 in [CORS20].
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A → B) where is-connected-map-is-succ-truncation-equivalence : is-truncation-equivalence (succ-𝕋 k) f → is-connected-map k f is-connected-map-is-succ-truncation-equivalence e b = is-connected-truncation-equivalence-is-connected ( truncation-equivalence-fiber-map-trunc-fiber f b) ( is-connected-is-contr k (is-contr-map-is-equiv e (unit-trunc b)))
The codomain of a k
-connected map is (k+1)
-connected if its domain is (k+1)
-connected
This follows part of the proof of Proposition 2.31 in [CORS20].
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} (f : A → B) where is-trunc-fiber-map-trunc-is-succ-connected : is-connected (succ-𝕋 k) A → (b : B) → is-trunc k (fiber (map-trunc (succ-𝕋 k) f) (unit-trunc b)) is-trunc-fiber-map-trunc-is-succ-connected c b = is-trunc-equiv k ( map-trunc (succ-𝕋 k) f (center c) = unit-trunc b) ( left-unit-law-Σ-is-contr c (center c)) ( is-trunc-type-trunc (map-trunc (succ-𝕋 k) f (center c)) (unit-trunc b)) is-succ-connected-is-connected-map-is-succ-connected : is-connected (succ-𝕋 k) A → is-connected-map k f → is-connected (succ-𝕋 k) B is-succ-connected-is-connected-map-is-succ-connected cA cf = is-contr-is-equiv' ( type-trunc (succ-𝕋 k) A) ( map-trunc (succ-𝕋 k) f) ( is-equiv-is-contr-map ( λ t → apply-universal-property-trunc-Prop ( is-surjective-is-truncation ( trunc (succ-𝕋 k) B) ( is-truncation-trunc) ( t)) ( is-contr-Prop (fiber (map-trunc (succ-𝕋 k) f) t)) ( λ (b , p) → tr ( λ s → is-contr (fiber (map-trunc (succ-𝕋 k) f) s)) ( p) ( is-contr-equiv' ( type-trunc k (fiber f b)) ( ( inv-equiv ( equiv-unit-trunc ( fiber (map-trunc (succ-𝕋 k) f) (unit-trunc b) , is-trunc-fiber-map-trunc-is-succ-connected cA b))) ∘e ( map-trunc k (fiber-map-trunc-fiber f b) , is-truncation-equivalence-fiber-map-trunc-fiber f b)) ( cf b))))) ( cA)
If g ∘ f
is (k+1)
-connected, then f
is k
-connected if and only if g
is (k+1)
-connected
This is an instance of Proposition 2.31 in [CORS20].
module _ {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} {C : UU l3} (g : B → C) (f : A → B) (cgf : is-connected-map (succ-𝕋 k) (g ∘ f)) where is-connected-map-right-factor-is-succ-connected-map-left-factor : is-connected-map (succ-𝕋 k) g → is-connected-map k f is-connected-map-right-factor-is-succ-connected-map-left-factor cg = is-connected-map-is-succ-truncation-equivalence f ( is-truncation-equivalence-right-factor g f ( is-truncation-equivalence-is-connected-map (g ∘ f) cgf) ( is-truncation-equivalence-is-connected-map g cg)) is-connected-map-right-factor-is-succ-connected-map-right-factor : is-connected-map k f → is-connected-map (succ-𝕋 k) g is-connected-map-right-factor-is-succ-connected-map-right-factor cf c = is-succ-connected-is-connected-map-is-succ-connected ( pr1) ( is-connected-equiv' (compute-fiber-comp g f c) (cgf c)) ( λ p → is-connected-equiv ( equiv-fiber-pr1 (fiber f ∘ pr1) p) ( cf (pr1 p)))
A k
-equivalence with a section is k
-connected
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) where is-connected-map-is-truncation-equivalence-section : (k : 𝕋) → section f → is-truncation-equivalence k f → is-connected-map k f is-connected-map-is-truncation-equivalence-section neg-two-𝕋 (s , h) e = is-neg-two-connected-map f is-connected-map-is-truncation-equivalence-section (succ-𝕋 k) (s , h) e = is-connected-map-right-factor-is-succ-connected-map-right-factor f s ( is-connected-map-is-equiv (is-equiv-htpy id h is-equiv-id)) ( is-connected-map-is-succ-truncation-equivalence s ( is-truncation-equivalence-right-factor f s ( is-truncation-equivalence-is-equiv ( f ∘ s) ( is-equiv-htpy id h is-equiv-id)) ( e)))
References
- The notion of
k
-equivalence is a special case of the notion ofL
-equivalence, whereL
is a reflective subuniverse. They were studied in the paper [CORS20]. - The class of
k
-equivalences is left orthogonal to the class ofk
-étale maps. This was shown in [CR21].
- [CR21]
- Felix Cherubini and Egbert Rijke. Modal descent. Mathematical Structures in Computer Science, 31(4):363–391, 04 2021. arXiv:2003.09713, doi:10.1017/S0960129520000201.
- [CORS20]
- J. Daniel Christensen, Morgan Opie, Egbert Rijke, and Luis Scoccola. Localization in Homotopy Type Theory. Higher Structures, 4(1):1–32, 02 2020. URL: http://articles.math.cas.cz/10.21136/HS.2020.01, arXiv:1807.04155, doi:10.21136/HS.2020.01.
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-10-09. Fredrik Bakke. Idea text
set-theory
(#1189). - 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).