Complete metric spaces
Content created by malarbol and Fredrik Bakke.
Created on 2024-09-28.
Last modified on 2025-05-01.
module metric-spaces.complete-metric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.identity-types open import foundation.propositions open import foundation.retractions open import foundation.sections open import foundation.subtypes open import foundation.universe-levels open import metric-spaces.cauchy-approximations-metric-spaces open import metric-spaces.convergent-cauchy-approximations-metric-spaces open import metric-spaces.metric-spaces
Idea
A metric space is complete¶ if all its Cauchy approximations are convergent.
Definitions
The property of being a complete metric space
module _ {l1 l2 : Level} (A : Metric-Space l1 l2) where is-complete-prop-Metric-Space : Prop (l1 ⊔ l2) is-complete-prop-Metric-Space = Π-Prop ( cauchy-approximation-Metric-Space A) ( is-convergent-prop-cauchy-approximation-Metric-Space A) is-complete-Metric-Space : UU (l1 ⊔ l2) is-complete-Metric-Space = type-Prop is-complete-prop-Metric-Space is-prop-is-complete-Metric-Space : is-prop is-complete-Metric-Space is-prop-is-complete-Metric-Space = is-prop-type-Prop is-complete-prop-Metric-Space
The type of complete metric spaces
module _ (l1 l2 : Level) where Complete-Metric-Space : UU (lsuc l1 ⊔ lsuc l2) Complete-Metric-Space = type-subtype (is-complete-prop-Metric-Space {l1} {l2})
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where metric-space-Complete-Metric-Space : Metric-Space l1 l2 metric-space-Complete-Metric-Space = pr1 A type-Complete-Metric-Space : UU l1 type-Complete-Metric-Space = type-Metric-Space metric-space-Complete-Metric-Space is-complete-metric-space-Complete-Metric-Space : is-complete-Metric-Space metric-space-Complete-Metric-Space is-complete-metric-space-Complete-Metric-Space = pr2 A
The equivalence between Cauchy approximations and convergent Cauchy approximations in a complete metric space
module _ {l1 l2 : Level} (A : Complete-Metric-Space l1 l2) where convergent-cauchy-approximation-Complete-Metric-Space : cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) → convergent-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) convergent-cauchy-approximation-Complete-Metric-Space u = ( u , is-complete-metric-space-Complete-Metric-Space A u) is-section-convergent-cauchy-approximation-Complete-Metric-Space : is-section ( convergent-cauchy-approximation-Complete-Metric-Space) ( inclusion-subtype ( is-convergent-prop-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A))) is-section-convergent-cauchy-approximation-Complete-Metric-Space u = eq-type-subtype ( is-convergent-prop-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A)) ( refl) is-retraction-convergent-cauchy-approximation-Metric-Space : is-retraction ( convergent-cauchy-approximation-Complete-Metric-Space) ( inclusion-subtype ( is-convergent-prop-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A))) is-retraction-convergent-cauchy-approximation-Metric-Space u = refl is-equiv-convergent-cauchy-approximation-Complete-Metric-Space : is-equiv convergent-cauchy-approximation-Complete-Metric-Space pr1 is-equiv-convergent-cauchy-approximation-Complete-Metric-Space = ( inclusion-subtype ( is-convergent-prop-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A))) , ( is-section-convergent-cauchy-approximation-Complete-Metric-Space) pr2 is-equiv-convergent-cauchy-approximation-Complete-Metric-Space = ( inclusion-subtype ( is-convergent-prop-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A))) , ( is-retraction-convergent-cauchy-approximation-Metric-Space)
The limit of a Cauchy approximation in a complete metric space
module _ { l1 l2 : Level} ( A : Complete-Metric-Space l1 l2) ( u : cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A)) where limit-cauchy-approximation-Complete-Metric-Space : type-Complete-Metric-Space A limit-cauchy-approximation-Complete-Metric-Space = limit-convergent-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( convergent-cauchy-approximation-Complete-Metric-Space A u) is-limit-limit-cauchy-approximation-Complete-Metric-Space : is-limit-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( u) ( limit-cauchy-approximation-Complete-Metric-Space) is-limit-limit-cauchy-approximation-Complete-Metric-Space = is-limit-limit-convergent-cauchy-approximation-Metric-Space ( metric-space-Complete-Metric-Space A) ( convergent-cauchy-approximation-Complete-Metric-Space A u)
External links
- Complete metric space at Wikidata
- Complete metric space at Wikipedia
Recent changes
- 2025-05-01. malarbol. The short map from a convergent Cauchy approximation in a saturated metric space to its limit (#1402).
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).