Chains in preorders

Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.

Created on 2022-03-16.
Last modified on 2023-05-05.

module order-theory.chains-preorders where
open import foundation.dependent-pair-types
open import foundation.propositions
open import foundation.subtypes
open import foundation.universe-levels

open import order-theory.preorders
open import order-theory.subpreorders
open import


A chain in a preorder P is a subtype S of P such that the ordering of P restricted to S is linear.


module _
  {l1 l2 : Level} (X : Preorder l1 l2)

  is-chain-Subpreorder-Prop :
    {l3 : Level} (S : type-Preorder X  Prop l3)  Prop (l1  l2  l3)
  is-chain-Subpreorder-Prop S =
    is-total-Preorder-Prop (preorder-Subpreorder X S)

  is-chain-Subpreorder :
    {l3 : Level} (S : type-Preorder X  Prop l3)  UU (l1  l2  l3)
  is-chain-Subpreorder S = type-Prop (is-chain-Subpreorder-Prop S)

  is-prop-is-chain-Subpreorder :
    {l3 : Level} (S : type-Preorder X  Prop l3) 
    is-prop (is-chain-Subpreorder S)
  is-prop-is-chain-Subpreorder S =
    is-prop-type-Prop (is-chain-Subpreorder-Prop S)

chain-Preorder :
  {l1 l2 : Level} (l : Level) (X : Preorder l1 l2)  UU (l1  l2  lsuc l)
chain-Preorder l X =
  Σ (type-Preorder X  Prop l) (is-chain-Subpreorder X)

module _
  {l1 l2 l3 : Level} (X : Preorder l1 l2) (C : chain-Preorder l3 X)

  sub-preorder-chain-Preorder : type-Preorder X  Prop l3
  sub-preorder-chain-Preorder = pr1 C

  type-chain-Preorder : UU (l1  l3)
  type-chain-Preorder = type-subtype sub-preorder-chain-Preorder

module _
  {l1 l2 : Level} (X : Preorder l1 l2)

  inclusion-chain-Preorder-Prop :
    {l3 l4 : Level}  chain-Preorder l3 X  chain-Preorder l4 X 
    Prop (l1  l3  l4)
  inclusion-chain-Preorder-Prop C D =
    inclusion-Subpreorder-Prop X
      ( sub-preorder-chain-Preorder X C)
      ( sub-preorder-chain-Preorder X D)

  inclusion-chain-Preorder :
    {l3 l4 : Level}  chain-Preorder l3 X  chain-Preorder l4 X 
    UU (l1  l3  l4)
  inclusion-chain-Preorder C D = type-Prop (inclusion-chain-Preorder-Prop C D)

  is-prop-inclusion-chain-Preorder :
    {l3 l4 : Level} (C : chain-Preorder l3 X) (D : chain-Preorder l4 X) 
    is-prop (inclusion-chain-Preorder C D)
  is-prop-inclusion-chain-Preorder C D =
    is-prop-type-Prop (inclusion-chain-Preorder-Prop C D)

Recent changes