Chains in preorders
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2022-03-16.
Last modified on 2024-10-20.
module order-theory.chains-preorders where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.preorders open import order-theory.subpreorders open import order-theory.total-preorders
Idea
A chain¶ in a
preorder P
is a
subtype S
of P
such that the ordering of P
restricted to S
is linear.
Definitions
The predicate on subsets of preorders to be a chain
module _ {l1 l2 l3 : Level} (X : Preorder l1 l2) (S : Subpreorder l3 X) where is-chain-prop-Subpreorder : Prop (l1 ⊔ l2 ⊔ l3) is-chain-prop-Subpreorder = is-total-Preorder-Prop (preorder-Subpreorder X S) is-chain-Subpreorder : UU (l1 ⊔ l2 ⊔ l3) is-chain-Subpreorder = type-Prop is-chain-prop-Subpreorder is-prop-is-chain-Subpreorder : is-prop is-chain-Subpreorder is-prop-is-chain-Subpreorder = is-prop-type-Prop is-chain-prop-Subpreorder
Chains in preorders
chain-Preorder : {l1 l2 : Level} (l : Level) (X : Preorder l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l) chain-Preorder l X = Σ (type-Preorder X → Prop l) (is-chain-Subpreorder X) module _ {l1 l2 l3 : Level} (X : Preorder l1 l2) (C : chain-Preorder l3 X) where subpreorder-chain-Preorder : Subpreorder l3 X subpreorder-chain-Preorder = pr1 C is-chain-subpreorder-chain-Preorder : is-chain-Subpreorder X subpreorder-chain-Preorder is-chain-subpreorder-chain-Preorder = pr2 C type-chain-Preorder : UU (l1 ⊔ l3) type-chain-Preorder = type-subtype subpreorder-chain-Preorder inclusion-subpreorder-chain-Preorder : type-chain-Preorder → type-Preorder X inclusion-subpreorder-chain-Preorder = inclusion-subtype subpreorder-chain-Preorder module _ {l1 l2 l3 l4 : Level} (X : Preorder l1 l2) (C : chain-Preorder l3 X) (D : chain-Preorder l4 X) where inclusion-prop-chain-Preorder : Prop (l1 ⊔ l3 ⊔ l4) inclusion-prop-chain-Preorder = inclusion-prop-Subpreorder X ( subpreorder-chain-Preorder X C) ( subpreorder-chain-Preorder X D) inclusion-chain-Preorder : UU (l1 ⊔ l3 ⊔ l4) inclusion-chain-Preorder = type-Prop inclusion-prop-chain-Preorder is-prop-inclusion-chain-Preorder : is-prop inclusion-chain-Preorder is-prop-inclusion-chain-Preorder = is-prop-type-Prop inclusion-prop-chain-Preorder
External links
- chain, in order theory at Lab
Recent changes
- 2024-10-20. Fredrik Bakke and Egbert Rijke. Order theory from @spcfox’s modal logic (#1205).
- 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-05-05. Egbert Rijke. cleaning up order theory (#591).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497). - 2023-03-09. Jonathan Prieto-Cubides. Add hooks (#495).