Continuation modalities

Content created by Fredrik Bakke and Egbert Rijke.

Created on 2024-11-05.
Last modified on 2024-11-19.

module orthogonal-factorization-systems.continuation-modalities where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.continuations
open import foundation.dependent-pair-types
open import foundation.equality-cartesian-product-types
open import foundation.equivalences
open import foundation.evaluation-functions
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.identity-types
open import foundation.logical-equivalences
open import foundation.propositions
open import foundation.retractions
open import foundation.sections
open import foundation.transport-along-identifications
open import foundation.type-arithmetic-cartesian-product-types
open import foundation.unit-type
open import foundation.universal-property-cartesian-product-types
open import foundation.universal-property-equivalences
open import foundation.universe-levels

open import orthogonal-factorization-systems.large-lawvere-tierney-topologies
open import orthogonal-factorization-systems.modal-operators
open import orthogonal-factorization-systems.types-local-at-maps
open import orthogonal-factorization-systems.uniquely-eliminating-modalities

Idea

Given a proposition R, the continuations monad on R

  A ↦ ((A → R) → R)

defines a higher modality.

Definitions

The underlying operators of continuation modalities

module _
  {l1 : Level} (l2 : Level) (R : Prop l1)
  where

  operator-continuation-modality : operator-modality l2 (l1  l2)
  operator-continuation-modality = continuation (type-Prop R)

  unit-continuation-modality :
    unit-modality operator-continuation-modality
  unit-continuation-modality = unit-continuation

Properties

The continuation monad on a proposition forms a uniquely eliminating modality

is-uniquely-eliminating-modality-continuation-modality :
  {l1 : Level} (l : Level) (R : Prop l1) 
  is-uniquely-eliminating-modality (unit-continuation-modality l R)
is-uniquely-eliminating-modality-continuation-modality l R P =
  is-local-dependent-type-is-prop
    ( unit-continuation-modality l R)
    ( continuation (type-Prop R)  P)
    ( λ _  is-prop-continuation-Prop R)
    ( λ f c 
      extend-continuation
        ( λ a 
          tr
            ( continuation (type-Prop R)  P)
            ( eq-is-prop (is-prop-continuation-Prop R))
            ( f a))
        ( c))

This proof is a generalization of the proof given in Example 1.9 of [RSS20], where the special case when R is the empty type is considered.

The continuation monad on a proposition defines a Lawvere–Tierney topology

Every operator taking values in propositions that has a unit map trivially preserves the unit type.

preserves-unit-continuation-modality' :
  {l1 : Level} {R : UU l1}  continuation R unit  unit
preserves-unit-continuation-modality' {R = R} =
  ( terminal-map (continuation R unit) , unit-continuation)

preserves-unit-continuation-modality :
  {l1 : Level} (R : Prop l1)  continuation (type-Prop R) unit  unit
preserves-unit-continuation-modality R =
  equiv-iff'
    ( continuation-Prop R unit)
    ( unit-Prop)
    ( preserves-unit-continuation-modality')

We must verify that continuations distribute over products. Notice that for a general type R, there are two canonical candidates for a map

  continuation R A × continuation R B → continuation R (A × B)

either by first computing the continuation at A and then computing the continuation at B, or the other way around. When R is a proposition, these agree and we get the appropriate distributivity law.

module _
  {l1 l2 l3 : Level} {R : UU l1} {A : UU l2} {B : UU l3}
  where

  map-distributive-product-continuation :
    continuation R (A × B)  continuation R A × continuation R B
  pr1 (map-distributive-product-continuation f) g = f  (a , b)  g a)
  pr2 (map-distributive-product-continuation f) g = f  (a , b)  g b)

  map-inv-distributive-product-left-first-continuation :
    continuation R A × continuation R B  continuation R (A × B)
  map-inv-distributive-product-left-first-continuation (fa , fb) g =
    fb  b  fa  a  g (a , b)))

  map-inv-distributive-product-right-first-continuation :
    continuation R A × continuation R B  continuation R (A × B)
  map-inv-distributive-product-right-first-continuation (fa , fb) g =
    fa  a  fb  b  g (a , b)))

  distributive-product-continuation-modality' :
    continuation R (A × B)  continuation R A × continuation R B
  distributive-product-continuation-modality' =
    ( map-distributive-product-continuation ,
      map-inv-distributive-product-left-first-continuation)

module _
  {l1 l2 l3 : Level} (R : Prop l1) {A : UU l2} {B : UU l3}
  where

  distributive-product-continuation-modality :
    continuation (type-Prop R) (A × B) 
    continuation (type-Prop R) A × continuation (type-Prop R) B
  distributive-product-continuation-modality =
    equiv-iff'
      ( continuation-Prop R (A × B))
      ( product-Prop (continuation-Prop R A) (continuation-Prop R B))
      ( distributive-product-continuation-modality')
module _
  {l : Level} (R : Prop l)
  where

  is-large-lawvere-tierney-topology-continuation :
    is-large-lawvere-tierney-topology (continuation-Prop R  type-Prop)
  is-large-lawvere-tierney-topology-continuation =
    λ where
    .is-idempotent-is-large-lawvere-tierney-topology P 
      ( mul-continuation , unit-continuation)
    .preserves-unit-is-large-lawvere-tierney-topology 
      preserves-unit-continuation-modality'
    .preserves-conjunction-is-large-lawvere-tierney-topology P Q 
      distributive-product-continuation-modality'

  continuation-large-lawvere-tierney-topology :
    large-lawvere-tierney-topology (l ⊔_)
  continuation-large-lawvere-tierney-topology =
    λ where
    .operator-large-lawvere-tierney-topology 
      continuation-Prop R  type-Prop
    .is-large-lawvere-tierney-topology-large-lawvere-tierney-topology 
      is-large-lawvere-tierney-topology-continuation

A → R is continuation R-stable

is-continuation-stable-exp :
  {l1 l2 : Level} (R : Prop l1) {A : UU l2} 
  is-modal (unit-continuation-modality (l1  l2) R) (A  type-Prop R)
is-continuation-stable-exp R {A} =
  is-equiv-has-converse
    ( function-Prop A R)
    ( continuation-Prop R (A  type-Prop R))
    ( _∘ unit-continuation)

References

[RSS20]
Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical Methods in Computer Science, 01 2020. URL: https://lmcs.episciences.org/6015, arXiv:1706.07526, doi:10.23638/LMCS-16(1:2)2020.

Recent changes