Complements of subtypes
Content created by Fredrik Bakke, Jonathan Prieto-Cubides and Egbert Rijke.
Created on 2022-09-12.
Last modified on 2023-10-20.
module foundation.complements-subtypes where
Imports
open import foundation.decidable-propositions open import foundation.decidable-subtypes open import foundation.full-subtypes open import foundation.negation open import foundation.propositional-truncations open import foundation.unions-subtypes open import foundation.universe-levels open import foundation-core.function-types open import foundation-core.subtypes
Idea
The complement of a subtype P
of A
consists of the elements that are not in P
.
Definition
Complements of subtypes
complement-subtype : {l1 l2 : Level} {A : UU l1} → subtype l2 A → subtype l2 A complement-subtype P x = neg-Prop (P x)
Complements of decidable subtypes
complement-decidable-subtype : {l1 l2 : Level} {A : UU l1} → decidable-subtype l2 A → decidable-subtype l2 A complement-decidable-subtype P x = neg-Decidable-Prop (P x)
Properties
The union of a subtype P
with its complement is the full subtype if and only if P
is a decidable subtype
module _ {l1 l2 : Level} {A : UU l1} where is-full-union-subtype-complement-subtype : (P : subtype l2 A) → is-decidable-subtype P → is-full-subtype (union-subtype P (complement-subtype P)) is-full-union-subtype-complement-subtype P d x = unit-trunc-Prop (d x) is-decidable-subtype-is-full-union-subtype-complement-subtype : (P : subtype l2 A) → is-full-subtype (union-subtype P (complement-subtype P)) → is-decidable-subtype P is-decidable-subtype-is-full-union-subtype-complement-subtype P H x = apply-universal-property-trunc-Prop ( H x) ( is-decidable-Prop (P x)) ( id) is-full-union-subtype-complement-decidable-subtype : (P : decidable-subtype l2 A) → is-full-decidable-subtype ( union-decidable-subtype P (complement-decidable-subtype P)) is-full-union-subtype-complement-decidable-subtype P = is-full-union-subtype-complement-subtype ( subtype-decidable-subtype P) ( is-decidable-decidable-subtype P)
Recent changes
- 2023-10-20. Fredrik Bakke and Egbert Rijke. Small subcategories (#861).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-05-05. Egbert Rijke. Cleaning up order theory 3 (#593).
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).