Cocartesian morphisms of arrows
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-11-30.
Last modified on 2024-04-25.
module synthetic-homotopy-theory.cocartesian-morphisms-arrows where
Imports
open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.morphisms-arrows open import foundation.propositions open import foundation.universe-levels open import synthetic-homotopy-theory.cocones-under-spans open import synthetic-homotopy-theory.pushouts open import synthetic-homotopy-theory.universal-property-pushouts
Idea
A morphism of arrows h : f → g
is said to be
cocartesian¶
if the commuting square
i
A -----> X
| |
f | h | g
∨ ∨
B -----> Y
j
is a pushout square. In this instance,
we also say that g
is a
cobase change¶ of f
.
Definitions
The predicate of being a cocartesian morphism of arrows
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (h : hom-arrow f g) where is-cocartesian-hom-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-cocartesian-hom-arrow = is-pushout f (map-domain-hom-arrow f g h) (cocone-hom-arrow f g h) is-prop-is-cocartesian-hom-arrow : is-prop is-cocartesian-hom-arrow is-prop-is-cocartesian-hom-arrow = is-prop-is-pushout f (map-domain-hom-arrow f g h) (cocone-hom-arrow f g h) is-cocartesian-hom-arrow-Prop : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) pr1 is-cocartesian-hom-arrow-Prop = is-cocartesian-hom-arrow pr2 is-cocartesian-hom-arrow-Prop = is-prop-is-cocartesian-hom-arrow
The type of cocartesian morphisms of arrows
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where cocartesian-hom-arrow : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) cocartesian-hom-arrow = Σ (hom-arrow f g) (is-cocartesian-hom-arrow f g) module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (h : cocartesian-hom-arrow f g) where hom-arrow-cocartesian-hom-arrow : hom-arrow f g hom-arrow-cocartesian-hom-arrow = pr1 h is-cocartesian-cocartesian-hom-arrow : is-cocartesian-hom-arrow f g hom-arrow-cocartesian-hom-arrow is-cocartesian-cocartesian-hom-arrow = pr2 h map-domain-cocartesian-hom-arrow : A → X map-domain-cocartesian-hom-arrow = map-domain-hom-arrow f g hom-arrow-cocartesian-hom-arrow map-codomain-cocartesian-hom-arrow : B → Y map-codomain-cocartesian-hom-arrow = map-codomain-hom-arrow f g hom-arrow-cocartesian-hom-arrow coh-cocartesian-hom-arrow : coherence-square-maps ( map-domain-cocartesian-hom-arrow) ( f) ( g) ( map-codomain-cocartesian-hom-arrow) coh-cocartesian-hom-arrow = coh-hom-arrow f g hom-arrow-cocartesian-hom-arrow cocone-cocartesian-hom-arrow : cocone f map-domain-cocartesian-hom-arrow Y cocone-cocartesian-hom-arrow = cocone-hom-arrow f g hom-arrow-cocartesian-hom-arrow universal-property-cocartesian-hom-arrow : universal-property-pushout ( f) ( map-domain-cocartesian-hom-arrow) ( cocone-cocartesian-hom-arrow) universal-property-cocartesian-hom-arrow = universal-property-pushout-is-pushout ( f) ( map-domain-cocartesian-hom-arrow) ( cocone-cocartesian-hom-arrow) ( is-cocartesian-cocartesian-hom-arrow)
See also
- Cartesian morphisms of arrows for the dual.
Recent changes
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-04-25. Fredrik Bakke. chore: Universal properties of colimits quantify over all universe levels (#1126).
- 2024-03-22. Fredrik Bakke. Additions to cartesian morphisms (#1087).
- 2024-01-25. Fredrik Bakke. Basic properties of orthogonal maps (#979).
- 2023-11-30. Egbert Rijke. Initial definitions for the cd-excision project (#931).